図形と方程式 - 質問解決D.B.(データベース) - Page 12

図形と方程式

福田の一夜漬け数学〜図形と方程式〜直線の方程式(6)点と直線の距離の公式・基本、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点(1,5)と直線$4x-3y+1=0$ の距離を求めよ。

${\Large\boxed{2}}$ 平行な2直線$2x-y+1=$, $2x-y-3=0$ の距離を求めよ。

${\Large\boxed{3}}$ 原点中心、半径2の円と直線$mx-y-3m+2=0$ 
が異なる2点で交わるように$m$の値の範囲を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(5)直線群と軌跡、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$x+5y-7=0$ $\cdots$①, $2x-y-4=0$ $\cdots$②の交点を通り、
直線$x+4y-6=0$ に垂直な直線の方程式を求めよ。

${\Large\boxed{2}}$ $m$が実数全体を動くとき、次の2直線の交点$P$はどんな図形を描くか。
$mx-y=0$ $\cdots$①  $x+my-m-2=0$ $\cdots$②
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(4)直線群と2次方程式の解、高校2年生

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#2次関数とグラフ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 2直線4x+3y+2=0 \cdots①, 5x-2y-3=0 \cdots②の交点を通り、\\
点A(-1,2)を通る直線の方程式を求めよ。\\
\\
{\Large\boxed{2}} 2次方程式x^2-ax-2a-1=0 について次の条件を満たすaの範囲を定めよ。\\
(1)-1 \lt x \lt 2 の範囲に異なる2つの実数解をもつ。\\
(2)少なくとも1つ-1 \lt x \lt 2 の範囲に実数解をもつ。
\end{eqnarray}
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(3)直線群の基本、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(3+2k)x+(4-k)y+5-3k=0$ は定数$k$の値にかかわら定点を通る。
この定点の座標を求めよ。

${\Large\boxed{2}}$ $2$直線$\ 2x-3y+5=0$ $\cdots$① $x+2y-6=0$ $\cdots$②の交点を通る直線
のうち次の条件を満たす直線の方程式を求めよ。
(1)点(-1,2)を通る
(2)直線$\ x+3y+7=0$ $\cdots$③と平行
(3)直線$\ 2x-y+7=0$ $\cdots$④と垂直
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(2)線対称と折れ線の最小、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 直線$\ell:x+2y-9=0,$ 2点$A(2,1),B(6,-1)$がある。次を求めよ。
(1)直線$\ell$に関して、点$A$と対称な点$C$の座標。
(2)直線$\ell$に関して、直線$m:x-y-1=0$と対称な直線$n$の方程式。
(3)直線$\ell$上の点$P$で$AP+BP$を最小にする点$P$の座標。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(1)平行・垂直条件、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$(2,-3)$を通り、直線$3x-4y+1=0$ に平行な直線と垂直な直線の
方程式を求めよ。

${\Large\boxed{2}}$ $2$直線$ax-y-a+1=0$ $\cdots$① $(a+2)x-ay+2a=0$ $\cdots$②
が次の条件を満たすとき、定数$a$の値を求めよ。
(1)平行である  (2)垂直である
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜内分・外分公式、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3点$A(-1,1),B(1,-2),C(5,0)$がある。次の点の座標を求めよ。
(1)線分ABを2:1に内分する点。
(2)線分CAを2:1に外分する点。
(3)線分BCの中点。
(4)$\triangle$ ABCの重心。
(5)4点A,B,C,Dが平行四辺形の4つの頂点になるような点D。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜2点間の距離の公式(2)高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\triangle ABC$において、辺$BC$の中点を$M$とする。次を証明せよ。
$AB^2+AC^2=2(AM^2+BM^2)$

${\Large\boxed{2}}$ $\triangle ABC$の重心をGとするとき、次を証明せよ。
$AB^2+AC^2=BG^2+CG^2+4AG^2$
(注意)$A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)$のとき$\triangle ABC$の重心の座標は
$\left(\displaystyle \frac{x_1+x_2+x_3}{3},\displaystyle \frac{y_1+y_2+y_3}{3}\right)$
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜2点間の距離の公式(1)高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}\ $平面上に2点$A(3,5),B(-1,3)$がある。次の問いに答えよ。
(1)$AB$の距離を求めよ。
(2)2点$A,B$から等距離にある$x$軸上の点$P$の座標を求めよ。
(3)三角形$ABC$が正三角形となるように点$C$の座標を求めよ。
この動画を見る 

広島大 円の方程式 三角比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(2)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$z$が原点中心、半径1の円周上を動くとき、次の条件を満たす
点$w$はどのような図形を描くか。
(1)$w=2iz+1$
(2)$w=\displaystyle \frac{3z-2i}{z-2}$

${\Large\boxed{2}}$ $\displaystyle \frac{z}{z^2+1}$が実数となるように$z$が動くとき、
点$z$はどのような図形を描くか。
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点zが次の方程式を満たすとき、点zはどのような図形を描くか。
(1)$|z-1|=|z+i|$
(2)$|2z-1-i|=4$
(3)$|2\bar{z}-1+i|=4$
(4)|$z+2|=2|z-1|$
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(3)〜受験編、東大の問題に挑戦!

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} \triangle ABC$は一辺の長さが2の正三角形である。点Aから発射された
光線は$\triangle ABC$の各辺にぶつかるたびに反射する。このとき、入射角
と反射角は等しい。この光線は$\triangle ABC$のどれかの頂点にぶつかると
そこで吸収されてしまう。今、Aから傾き$\displaystyle \frac{\sqrt3}{6}$
で発射された光線は何回か反射した後、どこかの
頂点に吸収された。さて、何回反射し、どの頂点に吸収されたのか。

東京大学過去問
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(1)〜受験編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 平面上に2点$A(-2,2),B(2,6)$がある。直線$l:y=2x$上の動点$P$で
$AP+PB$が最小となるような点$P$の座標とその最小値を求めよ。

${\Large\boxed{2}}$ 平面上に2点$A(7,2),B(2,8)$がある。$x$軸上の動点$P$、$y$軸上の
動点$Q$で、$AP+PQ+QB$が最小となる点$P$、$Q$の座標とそのときの
最小値を求めよ。
この動画を見る 

福田の一夜漬け数学〜絶対不等式(2)〜受験編

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#三角関数#軌跡と領域#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)任意の$\theta$に対して、$-2 \leqq x\cos\theta+y\sin\theta \leqq y+1$ が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。

(2)任意の角$\alpha,\beta$に対して、$-1 \leqq x^2\cos\alpha+y\sin\beta \leqq 1$が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
この動画を見る 

福田の一夜漬け数学〜絶対不等式(1)〜受験編

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数aに対し、不等式 $y \leqq 2ax-a^2+2a+2$の表す領域をD(a)とする。
(1)$-1 \leqq a \leqq 2$を満たす全てのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。

(2)$-1 \leqq a \leqq 2$を満たすいずれかのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。
この動画を見る 

福田の一夜漬け数学〜平面ベクトル(3)〜受験編・文理共通

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を原点、$A(1,1),B(1,-1)$とする。
(1) $\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$で定められる点Pを考える。$s,t$が $2s+t \leqq 2,$
$s \geqq 0,t \geqq 0$を満たすながら動くとき、点$P$の存在する範囲を図示せよ。

(2) $\overrightarrow{ OQ }=(1-u)\overrightarrow{ QA }+2u\overrightarrow{ QB }$で定められる点$Q$を考える。$u$が$0 \leqq u \leqq 1$を
満たしながら動くとき、点$P$の存在する範囲を図示せよ。
この動画を見る 

福田の一夜漬け数学〜多変数関数1文字固定(3)〜受験編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#指数関数と対数関数#微分法と積分法#軌跡と領域#指数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として$90^{ \circ }$
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)$V$を$a,b,c$で表せ。
(2)$a+b+c=1$のとき、$V$の取り得る値の範囲を求めよ。
この動画を見る 

福田の一夜漬け数学〜多変数関数、1文字固定(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#微分法と積分法#恒等式・等式・不等式の証明#軌跡と領域#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a+b+c=1$のとき、$a^2+b^2+c^2$の最小値を求めよ。

$xy$平面内の領域$-1 \leqq x \leqq 1,-1 \leqq y \leqq 1$ において、$1-ax-by+axy$
の最小値が正であるような$(a,b)$の存在範囲を図示せよ。
この動画を見る 

原点を中心とする円周上には無数に有理点がある。ピタゴラス数と関係が?

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#図形と方程式#微分法と積分法#円と方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
原点を中心とする円周上には無数に有理点がある。ピタゴラス数と関係があるのか解説していきます.
この動画を見る 

2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう。
この動画を見る 

【高校数学】 数Ⅱ-86 絶対値を含む領域

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$y \geqq | x+2 |$

②$ | x-y | \leqq 2$
この動画を見る 

【高校数学】 数Ⅱ-85 領域と最大・最小③

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①x,yが3つの不等式$x-3y\geqq-6,x+2y\geqq4,3x+y\leqq12$
を満たすとき、$x^2+y^2$の最大値および最小値を求めよう。
この動画を見る 

【高校数学】 数Ⅱ-84 領域と最大・最小②

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①x,yが3つの不等式$x+2y-4\geqq0,3x+y-12\leqq0,x-3y+6\geqq0$を満たすとき、$4x+y$の最大値および最小値を求めよう。
この動画を見る 

【高校数学】 数Ⅱ-83 領域と最大・最小①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①x,yが4つの不等式$x \geqq 0,y\geqq0,x+3y\leqq6,2x+y\leqq7$を満たすとき、$x+y$の最大値および最小値を求めよう。
この動画を見る 

【高校数学】 数Ⅱ-82 不等式の表す領域⑤

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$y \geqq x^2,y\leqq2x+3$

②$x^2+y-4\lt0,x^2-2x-y\lt0$

この動画を見る 

【高校数学】 数Ⅱ-81 不等式の表す領域④

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$(x-2y)(x-2) \lt 0$

②$(x-y)(x^2+y^2-1) \geqq 0$

③$(4x-y+1)(2x+y-4) \gt 0$
この動画を見る 

【高校数学】 数Ⅱ-80 不等式の表す領域③

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y - 3 \lt 0 \\
2x - y \lt 6
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \leqq 4 \\
2x - y - 2 \geqq 0
\end{array}
\right.
\end{eqnarray}$

③$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 \geqq 9 \\
2x + 3y + 6 \gt 0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【高校数学】 数Ⅱ-79 不等式の表す領域②

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$x^2+y^2 \lt 4$

②$x^2+y^2 \geqq 9$

③$x^2+y^2+6x-8y \leqq 0$

④$x^2+y^2-2x-6y+1 \gt 0$
この動画を見る 

【高校数学】 数Ⅱ-78 不等式の表す領域①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式の表す領域を図示しよう。

①$y \geqq x+2$

②$2x-y-6 \gt 0$

③$y \leqq 3$

④$x- \gt -1$
この動画を見る 
PAGE TOP