図形と方程式
【数Ⅱ】円を表す方程式【図形と方程式の関係】
福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
2022東京大学理系過去問
この動画を見る
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
2022東京大学理系過去問
福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。
2022東京慈恵会医科大学医学部過去問
この動画を見る
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。
2022東京慈恵会医科大学医学部過去問
【数Ⅱ】点と直線の距離の公式【導出をしてみよう】
【数Ⅱ】図形と方程式:束の考え方…我々は一体何をさせられているのか。
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの円
$x^2+y^2=25$
$(x-4)^2+(y-3)^2=2$
について
(1)2つの円の交点を通る直線の式を求めよ
(2)2つの円の交点と(3,1)を通る円の式を求めよ
この動画を見る
2つの円
$x^2+y^2=25$
$(x-4)^2+(y-3)^2=2$
について
(1)2つの円の交点を通る直線の式を求めよ
(2)2つの円の交点と(3,1)を通る円の式を求めよ
【数Ⅱ】直線に対称な点を求める【図の描き方を数式に】
【数Ⅱ】内分の公式・外分の公式を導出から丁寧に【公式を1つだけにする!?】
単元:
#数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ 数直線上の点A(3),B(6)について,線分ABを3:2に内分する点Pの座標を求めよ.$
この動画を見る
$ 数直線上の点A(3),B(6)について,線分ABを3:2に内分する点Pの座標を求めよ.$
大学入試問題#100 東京大学(1954) 軌跡・領域
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
点($x,y$)が原点を中心とする半径1の円の内部を動くとき
点($x+y,xy$)の動く範囲を図示せよ。
出典:1954年東京大学 入試問題
この動画を見る
点($x,y$)が原点を中心とする半径1の円の内部を動くとき
点($x+y,xy$)の動く範囲を図示せよ。
出典:1954年東京大学 入試問題
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
[1]座標平面上に点A(-8,0)をとる。また、不等式
$x^2+y^2-4x-10y+4 \leqq 0$
の表す領域をDとする。
(1)領域Dは、中心が点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$、半径が$\boxed{\ \ ウ\ \ }$の円の
$\boxed{\ \ エ\ \ }$である。
$\boxed{\ \ エ\ \ }$の解答群
⓪ 周 ① 内部 ② 外部
③ 周および内部 ④ 周および外部
以下、点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$をQとし、方程式
$x^2+y^2-4x-10y+4=0$
の表す図形をCとする。
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。
$(\textrm{i})(1)$により、直線$y=\boxed{\ \ オ\ \ }$は点Aを通るCの接線の一つとなること
がわかる。
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。
点Aを通り、傾きがkの直線をlとする。
太郎:直線lの方程式は$y=k(x+8)$と表すことができるから、
これを
$x^2+y^2-4x-10y+4=0$
に代入することで接線を求められそうだね。
花子:x軸と直線AQのなす角のタンジェントに着目することでも
求められそうだよ。
$(\textrm{ii})$ 太郎さんの求め方について考えてみよう。
$y=k(x+8)$を$x^2+y^2-4x-10y+4=0$に代入すると、
xについての2次方程式
$(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0$
が得られる。この方程式が$\boxed{\ \ カ\ \ }$ときのkの値が接線の傾きとなる。
$\boxed{\ \ カ\ \ }$の解答群
⓪重解をもつ
①異なる2つの実数解をもち、1つは0である
②異なる2つの正の実数解をもつ
③正の実数解と負の実数解をもつ
④異なる2つの負の実数解をもつ
⑤異なる2つの虚数解をもつ
$(\textrm{iii})$花子さんの求め方について考えてみよう。
x軸と直線AQのなす角を$\theta(0 \lt \theta \leqq \frac{\pi}{2})$とすると
$\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$
であり、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾きは$\tan\boxed{\ \ ケ\ \ }$
と表すことができる。
$\boxed{\ \ ケ\ \ }$の解答群
⓪$\theta$ ①$2\theta$ ②$(\theta+\frac{\pi}{2})$
③$(\theta-\frac{\pi}{2})$ ④$(\theta+\pi)$ ⑤$(\theta-\pi)$
⑥$(2\theta+\frac{\pi}{2})$ ⑦$(2\theta-\frac{\pi}{2})$
$(\textrm{iv})$点Aを通るCの接線のうち、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾き
を$k_0$とする。このとき、$(\textrm{ii})$または$(\textrm{iii})$の考え方を用いることにより
$k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$
であることがわかる。
直線lと領域Dが共有点をもつようなkの値の範囲は$\boxed{\ \ シ\ \ }$である。
$\boxed{\ \ シ\ \ }$の解答群
⓪$k \gt k_0$ ①$k \geqq k_0$
②$k \lt k_0$ ③$k \leqq k_0$
④$0 \lt k \lt k_0$ ⑤$0 \leqq k \leqq k_0$
2022共通テスト数学過去問
この動画を見る
[1]座標平面上に点A(-8,0)をとる。また、不等式
$x^2+y^2-4x-10y+4 \leqq 0$
の表す領域をDとする。
(1)領域Dは、中心が点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$、半径が$\boxed{\ \ ウ\ \ }$の円の
$\boxed{\ \ エ\ \ }$である。
$\boxed{\ \ エ\ \ }$の解答群
⓪ 周 ① 内部 ② 外部
③ 周および内部 ④ 周および外部
以下、点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$をQとし、方程式
$x^2+y^2-4x-10y+4=0$
の表す図形をCとする。
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。
$(\textrm{i})(1)$により、直線$y=\boxed{\ \ オ\ \ }$は点Aを通るCの接線の一つとなること
がわかる。
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。
点Aを通り、傾きがkの直線をlとする。
太郎:直線lの方程式は$y=k(x+8)$と表すことができるから、
これを
$x^2+y^2-4x-10y+4=0$
に代入することで接線を求められそうだね。
花子:x軸と直線AQのなす角のタンジェントに着目することでも
求められそうだよ。
$(\textrm{ii})$ 太郎さんの求め方について考えてみよう。
$y=k(x+8)$を$x^2+y^2-4x-10y+4=0$に代入すると、
xについての2次方程式
$(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0$
が得られる。この方程式が$\boxed{\ \ カ\ \ }$ときのkの値が接線の傾きとなる。
$\boxed{\ \ カ\ \ }$の解答群
⓪重解をもつ
①異なる2つの実数解をもち、1つは0である
②異なる2つの正の実数解をもつ
③正の実数解と負の実数解をもつ
④異なる2つの負の実数解をもつ
⑤異なる2つの虚数解をもつ
$(\textrm{iii})$花子さんの求め方について考えてみよう。
x軸と直線AQのなす角を$\theta(0 \lt \theta \leqq \frac{\pi}{2})$とすると
$\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$
であり、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾きは$\tan\boxed{\ \ ケ\ \ }$
と表すことができる。
$\boxed{\ \ ケ\ \ }$の解答群
⓪$\theta$ ①$2\theta$ ②$(\theta+\frac{\pi}{2})$
③$(\theta-\frac{\pi}{2})$ ④$(\theta+\pi)$ ⑤$(\theta-\pi)$
⑥$(2\theta+\frac{\pi}{2})$ ⑦$(2\theta-\frac{\pi}{2})$
$(\textrm{iv})$点Aを通るCの接線のうち、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾き
を$k_0$とする。このとき、$(\textrm{ii})$または$(\textrm{iii})$の考え方を用いることにより
$k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$
であることがわかる。
直線lと領域Dが共有点をもつようなkの値の範囲は$\boxed{\ \ シ\ \ }$である。
$\boxed{\ \ シ\ \ }$の解答群
⓪$k \gt k_0$ ①$k \geqq k_0$
②$k \lt k_0$ ③$k \leqq k_0$
④$0 \lt k \lt k_0$ ⑤$0 \leqq k \leqq k_0$
2022共通テスト数学過去問
【数Ⅱ】図形と方程式:横浜国立大2019年(理系)第4問の解説
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)
2019年度(前期)第4問
Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
この動画を見る
横浜国立大(理系)
2019年度(前期)第4問
Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
福田のわかった数学〜高校2年生070〜三角関数(9)三角方程式の共通解
単元:
#数Ⅱ#図形と方程式#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(9) 三角方程式の共通解
次の連立方程式$0 \leqq x \lt 2\pi$に共通解をもつとき
aの値とそのときの共通解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin2x+a\cos x=0 \\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る
数学$\textrm{II}$ 三角関数(9) 三角方程式の共通解
次の連立方程式$0 \leqq x \lt 2\pi$に共通解をもつとき
aの値とそのときの共通解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin2x+a\cos x=0 \\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}$
福田のわかった数学〜高校2年生066〜三角関数(5)三角方程式
単元:
#数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(5) 三角方程式
定角$\alpha$に対して次の一般解を求めよ。
(1)$\sin x=\sin\alpha$ (2)$\cos x=\cos\alpha$
(3)$\tan x=\tan\alpha$
この動画を見る
数学$\textrm{II}$ 三角関数(5) 三角方程式
定角$\alpha$に対して次の一般解を求めよ。
(1)$\sin x=\sin\alpha$ (2)$\cos x=\cos\alpha$
(3)$\tan x=\tan\alpha$
福田のわかった数学〜高校2年生064〜三角関数(3)三角方程式の基礎
単元:
#数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(3) 三角方程式の基礎
(1)$\sin\theta=-\frac{1}{2}$ (2)$\cos\theta=\frac{\sqrt3}{2}$ (3)$\tan\theta=-1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
この動画を見る
数学$\textrm{II}$ 三角関数(3) 三角方程式の基礎
(1)$\sin\theta=-\frac{1}{2}$ (2)$\cos\theta=\frac{\sqrt3}{2}$ (3)$\tan\theta=-1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
超簡単な方程式
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$ 0\leqq x\leqq 2\pi$
$25^{\cos x}-6・5^{\cos x-\frac{1}{2}}+1=0$
この動画を見る
これを解け.$ 0\leqq x\leqq 2\pi$
$25^{\cos x}-6・5^{\cos x-\frac{1}{2}}+1=0$
福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0
\end{array}
\right.
(-2 \leqq t \leqq 1)
\end{eqnarray}$
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。
2021立教大学理学部過去問
この動画を見る
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0
\end{array}
\right.
(-2 \leqq t \leqq 1)
\end{eqnarray}$
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。
2021立教大学理学部過去問
福田のわかった数学〜高校2年生061〜対称式と領域(3)
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 対称式と領域(3)
実数$x,\ y$が$x^2+xy+y^2=6$を
満たしながら動くとき
$x^2y+xy^2-x^2-2xy-y^2+x+y$
の取り得る値の範囲を求めよ。
この動画を見る
数学$\textrm{II}$ 対称式と領域(3)
実数$x,\ y$が$x^2+xy+y^2=6$を
満たしながら動くとき
$x^2y+xy^2-x^2-2xy-y^2+x+y$
の取り得る値の範囲を求めよ。
福田のわかった数学〜高校2年生060〜対称式と領域(2)
単元:
#数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 対称式と領域(2)
実数$x,\ y$が$x^2+xy+y^2 \leqq 1$を
満たしながら動くとき
$xy+2(x+y)$
の最大値、最小値を求めよ。
この動画を見る
数学$\textrm{II}$ 対称式と領域(2)
実数$x,\ y$が$x^2+xy+y^2 \leqq 1$を
満たしながら動くとき
$xy+2(x+y)$
の最大値、最小値を求めよ。
福田のわかった数学〜高校2年生059〜対称式と領域(1)
単元:
#数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$対称式と領域(1)
実数$x,\ yがx^2+y^2 \leqq 1$を
満たしながら動くとき、
次の点の存在範囲を図示せよ。
(1)$P(x+y,\ x-y) (2)Q(x+y,\ xy)$
この動画を見る
数学$\textrm{II}$対称式と領域(1)
実数$x,\ yがx^2+y^2 \leqq 1$を
満たしながら動くとき、
次の点の存在範囲を図示せよ。
(1)$P(x+y,\ x-y) (2)Q(x+y,\ xy)$
福田のわかった数学〜高校2年生058〜通過範囲(3)直線の通過範囲
単元:
#数Ⅱ#図形と方程式#軌跡と領域
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$通過範囲(3)
直線$(\cos\theta)x+(\sin\theta)y=1$ が通過する領域を図示せよ。
この動画を見る
数学$\textrm{II}$通過範囲(3)
直線$(\cos\theta)x+(\sin\theta)y=1$ が通過する領域を図示せよ。
福田のわかった数学〜高校2年生057〜通過範囲(2)直線の通過範囲
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$通過範囲(2)
mが$0 \leqq m \leqq 1$の実数を動くとき、直線
$y=mx+m^2$
が通過する領域を図示せよ。
この動画を見る
数学$\textrm{II}$通過範囲(2)
mが$0 \leqq m \leqq 1$の実数を動くとき、直線
$y=mx+m^2$
が通過する領域を図示せよ。
福田の数学〜青山学院大学2021年理工学部第4問〜複素数平面上の点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数平面上の点zが$z+\bar{ z }=2$を満たしながら動くとき、以下の問いに答えよ。
(1)点z全体が描く図形を複素数平面上に図示せよ。
(2)$w=(2+i)z$ で定まる点w全体が描く図形を調べよう。
$(\textrm{a})w$の実部をu、虚部をvとして$w=u+vi$と表すとき、u,vが満たす方程式
を求めよ。
$(\textrm{b})$点w全体が描く図形を複素数平面上に図示せよ。
(3)$w=z^2$で定まる点w全体が描く図形を複素数平面上に図示せよ。
2021青山学院大学理工学部過去問
この動画を見る
${\Large\boxed{4}}$複素数平面上の点zが$z+\bar{ z }=2$を満たしながら動くとき、以下の問いに答えよ。
(1)点z全体が描く図形を複素数平面上に図示せよ。
(2)$w=(2+i)z$ で定まる点w全体が描く図形を調べよう。
$(\textrm{a})w$の実部をu、虚部をvとして$w=u+vi$と表すとき、u,vが満たす方程式
を求めよ。
$(\textrm{b})$点w全体が描く図形を複素数平面上に図示せよ。
(3)$w=z^2$で定まる点w全体が描く図形を複素数平面上に図示せよ。
2021青山学院大学理工学部過去問
福田のわかった数学〜高校2年生056〜通過範囲(1)直線の通過範囲
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 通過範囲(1)
$m$が全ての実数を動くとき、直線
$y=mx+m^2$
の通過する領域を図示せよ。
この動画を見る
数学$\textrm{II}$ 通過範囲(1)
$m$が全ての実数を動くとき、直線
$y=mx+m^2$
の通過する領域を図示せよ。
福田の数学〜青山学院大学2021年理工学部第3問〜領域における最大最小
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 連立方程式
$\left\{
\begin{array}{1}
0 \leqq y \leqq 6 \\
y \geqq -x+7 \\
y \leqq -2x+14
\end{array}
\right.\\
$
の表す領域をDとする。
(1)領域Dを図示せよ。
(2)点$(x,\ y)$が領域Dを動くとき、$3x+2y$の最大値と最小値を求めよ。
(3)点$(x,\ y)$が領域Dを動くとき、$x^2-6x+2y$の最大値と最小値を求めよ。
2021青山学院大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$ 連立方程式
$\left\{
\begin{array}{1}
0 \leqq y \leqq 6 \\
y \geqq -x+7 \\
y \leqq -2x+14
\end{array}
\right.\\
$
の表す領域をDとする。
(1)領域Dを図示せよ。
(2)点$(x,\ y)$が領域Dを動くとき、$3x+2y$の最大値と最小値を求めよ。
(3)点$(x,\ y)$が領域Dを動くとき、$x^2-6x+2y$の最大値と最小値を求めよ。
2021青山学院大学理工学部過去問
福田のわかった数学〜高校2年生055〜領域(10)線形計画法
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(10) 線形計画法
下の表にある錠剤A,Bから栄養素$\textrm{I},\textrm{II},\textrm{III}$をそれぞれ42g,48g,30g以上摂取したい。
錠剤A,Bの個数の和を最小にするとすれば何個ずつ飲めばよいか。
1錠あたりの栄養素(g)
$\begin{array}{|c|c|c|c|}\hline
& \textrm{I} & \textrm{II} & \textrm{III}\\
\hline A & 8 & 4 & 2\\
\hline B & 4 & 6 & 6\\
\hline
\end{array}$
この動画を見る
数学$\textrm{II}$ 領域(10) 線形計画法
下の表にある錠剤A,Bから栄養素$\textrm{I},\textrm{II},\textrm{III}$をそれぞれ42g,48g,30g以上摂取したい。
錠剤A,Bの個数の和を最小にするとすれば何個ずつ飲めばよいか。
1錠あたりの栄養素(g)
$\begin{array}{|c|c|c|c|}\hline
& \textrm{I} & \textrm{II} & \textrm{III}\\
\hline A & 8 & 4 & 2\\
\hline B & 4 & 6 & 6\\
\hline
\end{array}$
福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。
(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。
(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。
(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。
(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。
(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。 $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。
2021上智大学理系過去問
この動画を見る
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。
(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。
(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。
(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。
(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。
(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。 $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。
2021上智大学理系過去問
福田のわかった数学〜高校2年生054〜領域(9)領域と最大最小(5)
単元:
#数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(9) 両機と最大最小(5)
$x^2+y^2 \leqq 10,\ y \leqq 3x$のとき、
$\frac{y+4}{x+3}$
の最大値、最小値を求めよ。
この動画を見る
数学$\textrm{II}$ 領域(9) 両機と最大最小(5)
$x^2+y^2 \leqq 10,\ y \leqq 3x$のとき、
$\frac{y+4}{x+3}$
の最大値、最小値を求めよ。
福田のわかった数学〜高校2年生053〜領域(8)領域と最大最小(4)
単元:
#数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(8) 領域と最大最小(4)
$2x+3y \geqq 9, 4x+y \leqq18, y \leqq 2$のとき、
$x^2+y^2$
の最大値、最小値を求めよ。
この動画を見る
数学$\textrm{II}$ 領域(8) 領域と最大最小(4)
$2x+3y \geqq 9, 4x+y \leqq18, y \leqq 2$のとき、
$x^2+y^2$
の最大値、最小値を求めよ。
福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(2)野菜Aには1個あたり栄養素$x_1$が8g、栄養素$x_2$が4g、栄養素$x_3$が2g
含まれ、野菜Bには1個あたり栄養素$x_1$が4g、栄養素$x_2$が6g、栄養素$x_3$
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素$x_1$
を42g以上、栄養素$x_2$を48g以上、栄養素$x_3$を30g以上含まれるように
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は
$(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })$
である。ただし、 $\boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }$とする。
2021上智大学文系過去問
この動画を見る
${\Large\boxed{4}}$(2)野菜Aには1個あたり栄養素$x_1$が8g、栄養素$x_2$が4g、栄養素$x_3$が2g
含まれ、野菜Bには1個あたり栄養素$x_1$が4g、栄養素$x_2$が6g、栄養素$x_3$
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素$x_1$
を42g以上、栄養素$x_2$を48g以上、栄養素$x_3$を30g以上含まれるように
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は
$(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })$
である。ただし、 $\boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }$とする。
2021上智大学文系過去問
福田のわかった数学〜高校2年生052〜領域(7)領域と最大最小(3)
単元:
#数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(7) 領域と最大最小(3)
$x^2+y^2 \leqq 10, y \geqq 0$ のとき、
$2x-y$
の最大値と最小値を求めよ。
この動画を見る
数学$\textrm{II}$ 領域(7) 領域と最大最小(3)
$x^2+y^2 \leqq 10, y \geqq 0$ のとき、
$2x-y$
の最大値と最小値を求めよ。
福田のわかった数学〜高校2年生051〜領域(6)領域と最大最小(2)
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(6) 領域と最大最小(2)
$x \geqq 0, y \geqq 0, 3x+y \leqq 9, x+2y \leqq 8$
のとき、
$ax+y$の最大値を$a$で表せ。
この動画を見る
数学$\textrm{II}$ 領域(6) 領域と最大最小(2)
$x \geqq 0, y \geqq 0, 3x+y \leqq 9, x+2y \leqq 8$
のとき、
$ax+y$の最大値を$a$で表せ。