数B

【数学B/数列】等差数列の一般項

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の等差数列の一般項を求めよ。
(1)
初項が$3$、公差が$2$である等差数列。
(2)
$17,14,11,8,5…$
(3)
第$4$項が$5,$第$10$項が$23$である等差数列。
この動画を見る
次の等差数列の一般項を求めよ。
(1)
初項が$3$、公差が$2$である等差数列。
(2)
$17,14,11,8,5…$
(3)
第$4$項が$5,$第$10$項が$23$である等差数列。
【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。
出典:2007年京都大学 入試問題
この動画を見る
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。
出典:2007年京都大学 入試問題
【数B】確率分布:母平均を推定してみよう!

単元:
#確率分布と統計的な推測#統計的な推測#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
母集団が正規分布に従っているが母平均が分からず、母標準偏差は110と分かっている。この母集団から大きさ25のデータを抽出したところ標本平均が1500であった。母平均を信頼度95%で推定せよ。
青チャート数学B例題より抜粋
この動画を見る
母集団が正規分布に従っているが母平均が分からず、母標準偏差は110と分かっている。この母集団から大きさ25のデータを抽出したところ標本平均が1500であった。母平均を信頼度95%で推定せよ。
青チャート数学B例題より抜粋
大学入試問題#74 神戸大学(1991) 数列と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_n\ a_{n+1} }$のとき
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
出典:1991年神戸大学 入試問題
この動画を見る
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_n\ a_{n+1} }$のとき
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
出典:1991年神戸大学 入試問題
【数B】確率分布:母平均の推定、信頼区間とは??

単元:
#確率分布と統計的な推測#確率分布#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
母平均の推定、標準化と信頼度の関係は??信頼区間の公式までを説明します!
この動画を見る
母平均の推定、標準化と信頼度の関係は??信頼区間の公式までを説明します!
もっちゃんと数学 映画「あなたの番です」で横浜流星が呟いた数式

大学入試問題#69 高知大学(2012) 数列

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師:
ますただ
問題文全文(内容文):
各自然数$n$に対して
$a_n \gt 0$
$S_n=\displaystyle \frac{1}{2}a_n^2+\displaystyle \frac{1}{2}a_n-1$をみたす一般項$a_n$を求めよ。
出典:2012年高知大学 入試問題
この動画を見る
各自然数$n$に対して
$a_n \gt 0$
$S_n=\displaystyle \frac{1}{2}a_n^2+\displaystyle \frac{1}{2}a_n-1$をみたす一般項$a_n$を求めよ。
出典:2012年高知大学 入試問題
【数B】確率分布:正規分布表を用いて確率を求めよう!~標本平均編(実際に計算してみよう)

単元:
#確率分布と統計的な推測#確率分布#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある生物の体長が$N(50,3^2)$に従っている。このとき、大きさ4の標本の標本平均をYとし、$P(Y\geqq 53)$を求めよ。
この動画を見る
ある生物の体長が$N(50,3^2)$に従っている。このとき、大きさ4の標本の標本平均をYとし、$P(Y\geqq 53)$を求めよ。
【数B】確率分布:正規分布表を用いて確率を求めよう!~標本平均編(何で大きさが大切なの?)

単元:
#確率分布と統計的な推測#確率分布#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
母集団から大きさ4の標本を取り出すとき、何で標準偏差は$\sqrt4$で割るのか?
問題(青チャートより抜粋)ある生物の体長が$N(50,3^2)$の正規分布に従っている。
(1)$P(47\leqq X\leqq 56)$
(2)大きさ4の標本を取り出し標本平均を$\var(X)$とするとき、$P(\var(x)\geqq 53)$
この動画を見る
母集団から大きさ4の標本を取り出すとき、何で標準偏差は$\sqrt4$で割るのか?
問題(青チャートより抜粋)ある生物の体長が$N(50,3^2)$の正規分布に従っている。
(1)$P(47\leqq X\leqq 56)$
(2)大きさ4の標本を取り出し標本平均を$\var(X)$とするとき、$P(\var(x)\geqq 53)$
大学入試問題#61 大阪工業大学(2021) 数列

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪工業大学
指導講師:
ますただ
問題文全文(内容文):
$S_n=\displaystyle \frac{n+3}{2}a_n-6$を満たすとき
一般項$a_n$を求めよ。
出典:2021年大阪工業大学 入試問題
この動画を見る
$S_n=\displaystyle \frac{n+3}{2}a_n-6$を満たすとき
一般項$a_n$を求めよ。
出典:2021年大阪工業大学 入試問題
どっちがでかい?大事なあの公式のエレガントな証明

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$999! $vs $500^{999}$
この動画を見る
どちらが大きいか?
$999! $vs $500^{999}$
【高校数学】等比数列の和の公式の問題演習 3-7.5【数学B】

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の等比数列の初項から第$n$項までの和$S{_n}$を求めよ。
ただし、$x \neq 0$とする。
(1)3,-6,12,…
(2)第2項が12,第5項が324
(3)$x$,$2x^2$,$4x^3$...
(4)第2項が3、初項から第3項までの和が13である等比数列の、初項$a$、公比$r$を求めよ。
この動画を見る
次の等比数列の初項から第$n$項までの和$S{_n}$を求めよ。
ただし、$x \neq 0$とする。
(1)3,-6,12,…
(2)第2項が12,第5項が324
(3)$x$,$2x^2$,$4x^3$...
(4)第2項が3、初項から第3項までの和が13である等比数列の、初項$a$、公比$r$を求めよ。
【数B】正規分布表を用いて確率を求めよう!~標準化の計算

単元:
#確率分布と統計的な推測#確率分布#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題(青チャートより抜粋)ある生物の体長が$N(50,3^2)$の正規分布に従っている。
(1)$P(47\leqq X\leqq 56)$
この動画を見る
問題(青チャートより抜粋)ある生物の体長が$N(50,3^2)$の正規分布に従っている。
(1)$P(47\leqq X\leqq 56)$
大学入試問題#53 横浜市立大学(2020) 数列

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師:
ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{a_n}{2n\ a_n+3}$で定まる数列の一般項$a_n$を求めよ
出典:2020年横浜市立大学 入試問題
この動画を見る
$a_1=1$
$a_{n+1}=\displaystyle \frac{a_n}{2n\ a_n+3}$で定まる数列の一般項$a_n$を求めよ
出典:2020年横浜市立大学 入試問題
1+2=❓ AKB□❗️❗️

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
1+2=
(a) 1!
(b) 2!
(c) 3!
(d) 3!!
この動画を見る
1+2=
(a) 1!
(b) 2!
(c) 3!
(d) 3!!
【高校数学】等比数列の和を丁寧に 3-7【数学B】

【数B】確率分布と統計的推測:母集団と標本:復元抽出と非復元抽出は何が違うの?

単元:
#確率分布と統計的な推測#統計的な推測#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1,2,3が書かれたカードが1枚ずつあり、この中から大きさ2の標本を抜き出すとき、「復元抽出」「非復元抽出」の違いは?
この動画を見る
1,2,3が書かれたカードが1枚ずつあり、この中から大きさ2の標本を抜き出すとき、「復元抽出」「非復元抽出」の違いは?
福田の数学〜立教大学2021年経済学部第2問〜2項間の漸化式の解法

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)$
また、$n$に無関係な定数$p,q$に対し、
$b_n=a_n+pn+q (n=1,2,3,\ldots)$
とおく。このとき次の問いに答えよ。
(1)$n,p,q$に無関係な定数$A,B,C,D,E$が
$b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)$
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。
(2)Aを(1)で求めた値とする。数列$\left\{b_n\right\}$が公比$A$の等比数列となるような
$p,q$の値をそれぞれ求めよ。
(3)(2)で求めた$p,q$の値に対して、数列$\left\{b_n\right\}$の一般項を求めよ。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{3}}$次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)$
また、$n$に無関係な定数$p,q$に対し、
$b_n=a_n+pn+q (n=1,2,3,\ldots)$
とおく。このとき次の問いに答えよ。
(1)$n,p,q$に無関係な定数$A,B,C,D,E$が
$b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)$
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。
(2)Aを(1)で求めた値とする。数列$\left\{b_n\right\}$が公比$A$の等比数列となるような
$p,q$の値をそれぞれ求めよ。
(3)(2)で求めた$p,q$の値に対して、数列$\left\{b_n\right\}$の一般項を求めよ。
2021立教大学経済学部過去問
息抜き問題

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
これの和を求めよ.
$7+77+777+・・・・・・+\overbrace{77・・・・77}^{ n桁 }$
この動画を見る
これの和を求めよ.
$7+77+777+・・・・・・+\overbrace{77・・・・77}^{ n桁 }$
福田の数学〜立教大学2021年経済学部第1問(5)〜対数方程式

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)$x$についての方程式
$(\log_2x)^2+5\log_2x+2=0$
の2つの解を$\alpha,\beta$とおくと、$\alpha\beta=\boxed{キ}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(5)$x$についての方程式
$(\log_2x)^2+5\log_2x+2=0$
の2つの解を$\alpha,\beta$とおくと、$\alpha\beta=\boxed{キ}$である。
2021立教大学経済学部過去問
【数B】確率分布と統計的推測:大数の法則と中心極限定理の「主張」と「イメージ」とは?

単元:
#確率分布と統計的な推測#統計的な推測#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
大数の法則・中心極限定理を細かく解説!
統計学で大切な2つの概念を、イメージとともに暗記出来るような動画です!
この動画を見る
大数の法則・中心極限定理を細かく解説!
統計学で大切な2つの概念を、イメージとともに暗記出来るような動画です!
【数B】確率分布と統計的推測:正規分布ー標準化の置き方とは?

単元:
#確率分布と統計的な推測#確率分布#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
データ数が多いものは疑似的に正規分布に直すことが出来る。正規分布→標準正規分布に直す計算とは?またその逆も解説します!
この動画を見る
データ数が多いものは疑似的に正規分布に直すことが出来る。正規分布→標準正規分布に直す計算とは?またその逆も解説します!
【数B】確率分布と統計的推測:正規分布表の見方と暗記すべき数字を説明します!

【数B】確率分布と統計的推測:正規分布を使って上位何人目か考えてみよう!

単元:
#確率分布と統計的な推測#確率分布#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1学年600人の生徒が数学Bのテストを受けた。
母集団がN(60,25)に従うとき、70点を取った生徒は上位何番目?
標準正規分布を用いて求めよう!正規分布表を使います。
この動画を見る
1学年600人の生徒が数学Bのテストを受けた。
母集団がN(60,25)に従うとき、70点を取った生徒は上位何番目?
標準正規分布を用いて求めよう!正規分布表を使います。
福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$nを0以上の整数とする。定積分
$I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx$
について、次の問(1)~(4)に答えよ。ただし、$e$は自然対数の底である。
(1)$I_0, I_1$の値をそれぞれ求めよ。
(2)$I_{n+1}$を$I_n$と$n$を用いて表せ。
(3)$x \gt 0$とする。関数$f(x)=\frac{(\log x)^2}{x}$の増減表を書け。
ただし、極値も増減表に記入すること。
(4)座標平面上の曲線$y=\frac{(\log x)^2}{x}$, x軸と直線$x=e$とで囲まれた図形を、
x軸の周りに1回転させてできる立体の体積Vを求めよ。
2021立教大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$nを0以上の整数とする。定積分
$I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx$
について、次の問(1)~(4)に答えよ。ただし、$e$は自然対数の底である。
(1)$I_0, I_1$の値をそれぞれ求めよ。
(2)$I_{n+1}$を$I_n$と$n$を用いて表せ。
(3)$x \gt 0$とする。関数$f(x)=\frac{(\log x)^2}{x}$の増減表を書け。
ただし、極値も増減表に記入すること。
(4)座標平面上の曲線$y=\frac{(\log x)^2}{x}$, x軸と直線$x=e$とで囲まれた図形を、
x軸の周りに1回転させてできる立体の体積Vを求めよ。
2021立教大学理工学部過去問
ウィルソンの定理

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$22!$を$23$で割った余りを求めよ.
$100!$を$101$で割った余りを求めよ.
この動画を見る
$22!$を$23$で割った余りを求めよ.
$100!$を$101$で割った余りを求めよ.
福田の数学〜立教大学2021年理学部第1問(4)〜数列の和と不等式の評価

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)一般項が$a_n=\frac{2}{n(n+2)}$であるような数列$\left\{a_n\right\}$の初項から第n項までの和
を$S_n$とする。$S_n \gt \frac{7}{6}$を満たす最小の自然数$n$は$\boxed{\ \ オ\ \ }$である。
2021立教大学理学部過去問
この動画を見る
${\Large\boxed{1}}$ (4)一般項が$a_n=\frac{2}{n(n+2)}$であるような数列$\left\{a_n\right\}$の初項から第n項までの和
を$S_n$とする。$S_n \gt \frac{7}{6}$を満たす最小の自然数$n$は$\boxed{\ \ オ\ \ }$である。
2021立教大学理学部過去問
福田のわかった数学〜高校1年生063〜場合の数(2)完全順列

単元:
#数A#場合の数と確率#場合の数#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(2) 完全順列
1,2,3,4を1列に並べたものを$a_1a_2a_3a_4$とする。
$a_1\neq 1,a_2\neq 2,a_3\neq 3,a_4\neq 4$を満たす並べ方は何通りあるか。
この動画を見る
数学$\textrm{I}$ 場合の数(2) 完全順列
1,2,3,4を1列に並べたものを$a_1a_2a_3a_4$とする。
$a_1\neq 1,a_2\neq 2,a_3\neq 3,a_4\neq 4$を満たす並べ方は何通りあるか。
福田の数学〜明治大学2021年理工学部第2問〜格子点と確率

単元:
#数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#大学入試解答速報#数学#明治大学#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの
を格子点と呼ぶ。$|x|+|y|=2n$を満たす格子点(x,\ y)全体の集合を$D_{2n}$とする。
(1)$D_4$は$\boxed{\ \ あ\ \ }$個の点からなる。一般に、$D_{2n}$は$\boxed{\ \ い\ \ }$個の点からなる。
(2)$D_{2n}$に属する点$(x,\ y)$で$|x-2n|+|y|=2n$を満たすものは全部で$\boxed{\ \ う\ \ }$個ある。
(3)$D_{2n}$に属する点$(x,\ y)$で$|x-n|+|y-n|=2n$を満たすものは全部で$\boxed{\ \ え\ \ }$個ある。
(4)$D_{2n}$から異なる2点$(x_1,\ y_1),\ (x_2,\ y_2)$を無作為に選ぶとき、
$|x_1-x_2|+|y_1-y_2|=2n$
が成り立つ確率は$\boxed{\ \ お\ \ }$である。
2021明治大学理工学部過去問
この動画を見る
${\Large\boxed{2}}$ nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの
を格子点と呼ぶ。$|x|+|y|=2n$を満たす格子点(x,\ y)全体の集合を$D_{2n}$とする。
(1)$D_4$は$\boxed{\ \ あ\ \ }$個の点からなる。一般に、$D_{2n}$は$\boxed{\ \ い\ \ }$個の点からなる。
(2)$D_{2n}$に属する点$(x,\ y)$で$|x-2n|+|y|=2n$を満たすものは全部で$\boxed{\ \ う\ \ }$個ある。
(3)$D_{2n}$に属する点$(x,\ y)$で$|x-n|+|y-n|=2n$を満たすものは全部で$\boxed{\ \ え\ \ }$個ある。
(4)$D_{2n}$から異なる2点$(x_1,\ y_1),\ (x_2,\ y_2)$を無作為に選ぶとき、
$|x_1-x_2|+|y_1-y_2|=2n$
が成り立つ確率は$\boxed{\ \ お\ \ }$である。
2021明治大学理工学部過去問
広島大2002漸化式 最大項を求める

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=-30$であり,$9a_{a+1}=a_n-\dfrac{4}{3^n}$である.
$a_n$が最大となる自然数$n$を求めよ.
広島大過去問
この動画を見る
$a_{1}=-30$であり,$9a_{a+1}=a_n-\dfrac{4}{3^n}$である.
$a_n$が最大となる自然数$n$を求めよ.
広島大過去問