数B

北海道大 等比複素数列 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
数列{$Z_n$}は初項48、公比$\frac{1}{4}(\sqrt{6}+\sqrt{2}i)$の等比複素数列である。
この数列の項のうち実数のみの項を並べた数列を{$a_n$}
(1)$Z_4$
(2)$a_3$
(3)$\displaystyle\sum_{n=1}^\infty a_n$
この動画を見る
北海道大学過去問題
数列{$Z_n$}は初項48、公比$\frac{1}{4}(\sqrt{6}+\sqrt{2}i)$の等比複素数列である。
この数列の項のうち実数のみの項を並べた数列を{$a_n$}
(1)$Z_4$
(2)$a_3$
(3)$\displaystyle\sum_{n=1}^\infty a_n$
京都大学 確率 数列 融合問題 高校数学 Mathematics Japanese university entrance exam Kyoto University

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
2005京都大学過去問題
1~nまでの番号のついてn枚($n \geqq 3$,自然数)から3枚取り出して小さい順に並べたときに等差数列になる確率を求めよ.
この動画を見る
2005京都大学過去問題
1~nまでの番号のついてn枚($n \geqq 3$,自然数)から3枚取り出して小さい順に並べたときに等差数列になる確率を求めよ.
九州大 Σの公式証明 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
2010九州大学過去問題
以下の問いに答えよ。証明
(1)和$1+2+3+\cdots+n$をnの多項式で表せ
(2)和$1^2+2^2+3^2+\cdots+n^2$をnの多項式で表せ
(3)和$1^3+2^3+3^3+\cdots+n^3$をnの多項式で表せ
この動画を見る
2010九州大学過去問題
以下の問いに答えよ。証明
(1)和$1+2+3+\cdots+n$をnの多項式で表せ
(2)和$1^2+2^2+3^2+\cdots+n^2$をnの多項式で表せ
(3)和$1^3+2^3+3^3+\cdots+n^3$をnの多項式で表せ
旭川医大 漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
旭川医科大学過去問題
数列{$a_n$},{$b_n$}
$b_n=3a_{n+1}-2a_n$と定義
{$b_n$}は初項b$(\neq 0)$,公比rの等比数列
(1)$b=r=2 , a_1=\frac{1}{2}$のとき{$a_n$}の一般項
(2){$a_n$}が等比数列となるための必要十分条件を$b,r,a_1$を用いて表せ。
この動画を見る
旭川医科大学過去問題
数列{$a_n$},{$b_n$}
$b_n=3a_{n+1}-2a_n$と定義
{$b_n$}は初項b$(\neq 0)$,公比rの等比数列
(1)$b=r=2 , a_1=\frac{1}{2}$のとき{$a_n$}の一般項
(2){$a_n$}が等比数列となるための必要十分条件を$b,r,a_1$を用いて表せ。
東京理科 分数型漸化式 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京理科大学過去問題
$a_1=3,\quad a_{n+1}= \frac{3a_n+2}{a_n+2}$
数列{$a_n$}の一般項を求めよ。
この動画を見る
東京理科大学過去問題
$a_1=3,\quad a_{n+1}= \frac{3a_n+2}{a_n+2}$
数列{$a_n$}の一般項を求めよ。
広島大 漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$9a_{n+1}=a_n+\frac{4}{3^n},a_1=-30$
一般項を求めよ。
この動画を見る
広島大学過去問題
$9a_{n+1}=a_n+\frac{4}{3^n},a_1=-30$
一般項を求めよ。
福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
この動画を見る
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
早稲田 群数列の和 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
k自然数 $a_k$は$\sqrt k$にもっとも近い整数
(例)$a_5=2,a_8=3,a_{20}=4$
(1)$\displaystyle\sum_{k=1}^{12}a_k=a_1+a_2+\cdots+a_{12}$
(2)$\displaystyle\sum_{k=1}^{1998}a_k=a_1+a_2+\cdots+a_{1998}$
この動画を見る
早稲田大学過去問題
k自然数 $a_k$は$\sqrt k$にもっとも近い整数
(例)$a_5=2,a_8=3,a_{20}=4$
(1)$\displaystyle\sum_{k=1}^{12}a_k=a_1+a_2+\cdots+a_{12}$
(2)$\displaystyle\sum_{k=1}^{1998}a_k=a_1+a_2+\cdots+a_{1998}$
秋田大(医)数列の和 Σ 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$\displaystyle\sum_{k=1}^n \frac{1}{k}(a_k+\frac{1}{k+1})=2^n+1-\frac{1}{n+1}$
(1)数列{$a_n$}の一般項をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^na_k$を求めよ。
この動画を見る
秋田大学過去問題
$\displaystyle\sum_{k=1}^n \frac{1}{k}(a_k+\frac{1}{k+1})=2^n+1-\frac{1}{n+1}$
(1)数列{$a_n$}の一般項をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^na_k$を求めよ。
横浜国大 整数問題 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
P素数、n自然数
$P^n$を分母とする既約分数で、0より大きく、1より小さいものの総和を$S_n$
$S_1,S_2,S_3$
$S_n$を求めよ。
この動画を見る
横浜国立大学過去問題
P素数、n自然数
$P^n$を分母とする既約分数で、0より大きく、1より小さいものの総和を$S_n$
$S_1,S_2,S_3$
$S_n$を求めよ。
福田の一夜漬け数学〜確率漸化式(4)〜名古屋市立大学の問題に挑戦(受験編)

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B$の2人がサイコロを使って次のようなルールでゲームを行う。
先に1を出した方を勝ちとして終了する。
$(\textrm{i})A$が1回目にサイコロを投げる
$(\textrm{ii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iv})B$がサイコロを投げて1,2,3以外が出たときは、次の回はAがサイコロを投げる。
$(\textrm{v})B$がサイコロを投げて2か3が出たときは、次の回もBがサイコロを投げる。
(1)$k$回目にAがサイコロを投げる確率を$P_k,B$が投げる確率を$Q_k$とする。
$P_{k+1}$を$P_k$と$Q_k$を用いて表せ。
(2)k回目に$A$がサイコロを投げて勝つ確率を$R_k$とする。$R_k$を$k$を用いて表せ。
この動画を見る
${\Large\boxed{1}}$ $A,B$の2人がサイコロを使って次のようなルールでゲームを行う。
先に1を出した方を勝ちとして終了する。
$(\textrm{i})A$が1回目にサイコロを投げる
$(\textrm{ii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iv})B$がサイコロを投げて1,2,3以外が出たときは、次の回はAがサイコロを投げる。
$(\textrm{v})B$がサイコロを投げて2か3が出たときは、次の回もBがサイコロを投げる。
(1)$k$回目にAがサイコロを投げる確率を$P_k,B$が投げる確率を$Q_k$とする。
$P_{k+1}$を$P_k$と$Q_k$を用いて表せ。
(2)k回目に$A$がサイコロを投げて勝つ確率を$R_k$とする。$R_k$を$k$を用いて表せ。
福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
福田の一夜漬け数学〜確率漸化式(2)〜推移図の作り方のコツ(受験編)

単元:
#数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
この動画を見る
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。
(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。
(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
東邦 横市(医)慶應 高校数学 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
東邦大学過去問題
$2log_5x+log_5y=log_5(x^2+y+59)$を満たす整数x,y
横浜市立大学過去問題
$\displaystyle\sum_{k=1}^{2n}(-1)^{k-1}k^2$
慶応義塾大学過去問題
$x+y+z=28$を満たす非負整数の組(x,y,z)のうちZが偶数となる場合の個数
この動画を見る
東邦大学過去問題
$2log_5x+log_5y=log_5(x^2+y+59)$を満たす整数x,y
横浜市立大学過去問題
$\displaystyle\sum_{k=1}^{2n}(-1)^{k-1}k^2$
慶応義塾大学過去問題
$x+y+z=28$を満たす非負整数の組(x,y,z)のうちZが偶数となる場合の個数
秋田大 慶応大 3次方程式 Σ 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#複素数平面#数列#数列とその和(等差・等比・階差・Σ)#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#秋田大学#数B#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$2x^3-3x^2+ax-1=0$の1つの解は$x=\frac{1}{2}$,他の解をα,βとしたとき、$α^{30}+β^{30}$の値
慶応義塾大学過去問題
$\displaystyle\sum_{k=1}^nk・2^{k+2}$の値をnで表せ
この動画を見る
秋田大学過去問題
$2x^3-3x^2+ax-1=0$の1つの解は$x=\frac{1}{2}$,他の解をα,βとしたとき、$α^{30}+β^{30}$の値
慶応義塾大学過去問題
$\displaystyle\sum_{k=1}^nk・2^{k+2}$の値をnで表せ
高知大 筑波大 指数方程式 漸化式 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#筑波大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
$f(x)=x^4+4^{-x}-2^{2+x}-2^{2-x}+2$
①f(x)の最小値とそのときのxの値
②f(x)=0を解け
筑波大学過去問題
$(5+\sqrt2)^n=a_n+b_n\sqrt2 \quad (n自然数)$
$a_n$,$b_n$をnを用いて表せ。
この動画を見る
高知大学過去問題
$f(x)=x^4+4^{-x}-2^{2+x}-2^{2-x}+2$
①f(x)の最小値とそのときのxの値
②f(x)=0を解け
筑波大学過去問題
$(5+\sqrt2)^n=a_n+b_n\sqrt2 \quad (n自然数)$
$a_n$,$b_n$をnを用いて表せ。
愛媛 香川 大分 整式の剰余 整数 漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#愛媛大学#香川大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。
香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。
大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
この動画を見る
愛媛大学過去問題
$x^{2009}$を$x^2+1$で割った時の余りを求めよ。
香川大学
$6n^5-15n^4+10n^3-n$は30の倍数であることを示せ。
大分大学
$a_1=2,a_{n+1}=4a_n-s_n$のときの一般項を求めよ。
$s_n=\displaystyle\sum_{k=1}^n a_k$である。
京大 徳島大 整数・漸化式 Mathematics Japanese university entrance exam Kyoto University

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#徳島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
Pを素数、nを自然数
$(P^n)!$はPで何回割り切れるか
徳島大学過去問題
$a_1 = 2\sqrt2 , a_{n+1}=2 \sqrt{a_n}$
(1)一般項$a_n$を求めよ。
(2)初項から第n項までの積$a_1 a_2 \cdots a_n$を求めよ。
この動画を見る
京都大学過去問題
Pを素数、nを自然数
$(P^n)!$はPで何回割り切れるか
徳島大学過去問題
$a_1 = 2\sqrt2 , a_{n+1}=2 \sqrt{a_n}$
(1)一般項$a_n$を求めよ。
(2)初項から第n項までの積$a_1 a_2 \cdots a_n$を求めよ。
関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ
立教大学過去問題
$2^{18}-1$を素因数分解
この動画を見る
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ
立教大学過去問題
$2^{18}-1$を素因数分解
防衛大・三重大 漸化式 三次関数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#漸化式#防衛大学校#数学(高校生)#三重大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$S_n$は初項からn項までの和
$S_n=1-(2n^2+n-1)a_n$
(1)$a_n$をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^{20}a_n$
三重大学過去問題
$f(x)=2x^3-9x^2+12x$と$y=kx$が2点のみを共有するkの値
この動画を見る
防衛大学過去問題
$S_n$は初項からn項までの和
$S_n=1-(2n^2+n-1)a_n$
(1)$a_n$をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^{20}a_n$
三重大学過去問題
$f(x)=2x^3-9x^2+12x$と$y=kx$が2点のみを共有するkの値
佐賀大 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
証明せよ
この動画を見る
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
証明せよ
熊本大 漸化式 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
熊本大学過去問題
$a_1=b_1=1,b_{n+1}=3b_n+a_n$
$c_n=a_n+b_n+1$
数列{$c_n$}は公比3の等比数列である。
(1)$a_n$をnで表せ。
(2)$b_n$をnで表せ。
この動画を見る
熊本大学過去問題
$a_1=b_1=1,b_{n+1}=3b_n+a_n$
$c_n=a_n+b_n+1$
数列{$c_n$}は公比3の等比数列である。
(1)$a_n$をnで表せ。
(2)$b_n$をnで表せ。
金沢大(医) 漸化式 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#数列#漸化式#数学(高校生)#金沢大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
金沢大学過去問題
$a_1=36$ (nは自然数)
$a_{n+1}=2a_n+2^{n+3}n-17・2^{n+1}$
(1)$\{ a_n \} $の一般項を求めよ。
(2)$a_n$>$a_{n+1}$となるaの範囲及び$a_n$が最小となるnの値を求めよ。
(3)$S_n=a_1+a_2+a_3+ \cdots +a_n$で$S_n$が最小となるnの値をすべて求めよ。
この動画を見る
金沢大学過去問題
$a_1=36$ (nは自然数)
$a_{n+1}=2a_n+2^{n+3}n-17・2^{n+1}$
(1)$\{ a_n \} $の一般項を求めよ。
(2)$a_n$>$a_{n+1}$となるaの範囲及び$a_n$が最小となるnの値を求めよ。
(3)$S_n=a_1+a_2+a_3+ \cdots +a_n$で$S_n$が最小となるnの値をすべて求めよ。
弘前大(医) 漸化式 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#数列#漸化式#数学(高校生)#弘前大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$a_1=a_2=1$
$a_{n+1}= a_n+2 \displaystyle\sum_{k=1}^{n-1}a_k(n \geqq 2)$
数列$ \{ a_n \} $の一般項$a_n$を求めよ。
この動画を見る
弘前大学過去問題
$a_1=a_2=1$
$a_{n+1}= a_n+2 \displaystyle\sum_{k=1}^{n-1}a_k(n \geqq 2)$
数列$ \{ a_n \} $の一般項$a_n$を求めよ。
【旧作】群数列の解き方が13分で明確にわかる動画【数学B】

東北大 分数型漸化式 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#数列#漸化式#東北大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
2008東北大学過去問題
$a_1=2 \quad a_{n+1}=\frac{4a_n+1}{2a_n+3}$
(1)$b_n = \frac{a_n+β}{a_n+α}$として$\{ b_n \}$が等比数列となるようなα,β(α>β)を1組求めよ。
(2)$\{ a_n \}$の一般項$a_n$を求めよ。
この動画を見る
2008東北大学過去問題
$a_1=2 \quad a_{n+1}=\frac{4a_n+1}{2a_n+3}$
(1)$b_n = \frac{a_n+β}{a_n+α}$として$\{ b_n \}$が等比数列となるようなα,β(α>β)を1組求めよ。
(2)$\{ a_n \}$の一般項$a_n$を求めよ。
福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察5(受験編)

単元:
#数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$n$個の正の数$a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}\\$
この動画を見る
$n$個の正の数$a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}\\$
静岡大 数学的帰納法 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#数列#数学的帰納法#静岡大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
この動画を見る
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
浜松医大 確率 漸化式 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
アリがAを出発し、1秒に一辺歩きGに達すると停止する。
辺上を歩き頂点においてどこにいくかは等確率。
n秒後にGに到達する確率。
*図は動画内参照
この動画を見る
浜松医科大学過去問題
アリがAを出発し、1秒に一辺歩きGに達すると停止する。
辺上を歩き頂点においてどこにいくかは等確率。
n秒後にGに到達する確率。
*図は動画内参照