関数と極限
福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 曲線C:y=e^xを考える。\\
(1)a,bを実数とし、a \geqq 0とする。曲線Cと直線y=ax+bが共有点をもつため\\
のaとbの条件を求めよ。\\
(2)正の実数tに対し、C上の点A(t,e^t)を中心とし、直線y=xに接する円Dを\\
考える。直線y=xと円Dの接点Bのx座標は\boxed{\ \ タ\ \ }であり、\\
円Dの半径は\boxed{\ \ チ\ \ }である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標\\
をそれぞれX(t),Y(t)とする。このとき、等式\\
\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0\\
が成り立つような実数kを定めるとk=\boxed{\ \ ツ\ \ }である。\\
ただし、\lim_{t \to \infty}te^{-t}=0である。
\end{eqnarray}
2022慶應義塾大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ 曲線C:y=e^xを考える。\\
(1)a,bを実数とし、a \geqq 0とする。曲線Cと直線y=ax+bが共有点をもつため\\
のaとbの条件を求めよ。\\
(2)正の実数tに対し、C上の点A(t,e^t)を中心とし、直線y=xに接する円Dを\\
考える。直線y=xと円Dの接点Bのx座標は\boxed{\ \ タ\ \ }であり、\\
円Dの半径は\boxed{\ \ チ\ \ }である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標\\
をそれぞれX(t),Y(t)とする。このとき、等式\\
\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0\\
が成り立つような実数kを定めるとk=\boxed{\ \ ツ\ \ }である。\\
ただし、\lim_{t \to \infty}te^{-t}=0である。
\end{eqnarray}
2022慶應義塾大学理工学部過去問
福田の数学〜千葉大学2022年理系第8問〜定積分で著された式の極限
単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{8}}\ 正の整数m,nに対して、\hspace{120pt}\\
A(m,n)=(m+1)n^{m+1}\int_o^{\frac{1}{n}}x^me^{-x}dx\\
とおく。\\
(1)e^{-\frac{1}{n}} \leqq A(m,n) \leqq 1 を証明せよ。\\
(2)各mに対して、b_m=\lim_{n \to \infty}A(m,n) を求めよ。\\
(3)各nに対して、c_n=\lim_{m \to \infty}A(m,n) を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{8}}\ 正の整数m,nに対して、\hspace{120pt}\\
A(m,n)=(m+1)n^{m+1}\int_o^{\frac{1}{n}}x^me^{-x}dx\\
とおく。\\
(1)e^{-\frac{1}{n}} \leqq A(m,n) \leqq 1 を証明せよ。\\
(2)各mに対して、b_m=\lim_{n \to \infty}A(m,n) を求めよ。\\
(3)各nに対して、c_n=\lim_{m \to \infty}A(m,n) を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
【超難問】2-1が難しすぎる世界
単元:
#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた2-1の計算紹介動画です
この動画を見る
深読みしすぎた2-1の計算紹介動画です
福田の数学〜九州大学2022年理系第2問〜商と余りの関係と極限
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ nを3以上の自然数、\alpha,\betaを相異なる実数とするとき、以下の問いに答えよ。\\
(1)次を満たす実数A,B,Cと整式Q(x)が存在することを示せ。\\
x^n=(x-\alpha)(x-\beta)^2Q(x)+A(x-\alpha)(x-\beta)+B(x-\alpha)+C\\
(2)(1)のA,B,Cをn,\alpha,\betaを用いて表せ。\\
(3)(2)のAについて、nと\alphaを固定して、\betaを\alphaに近づけたときの極限\\
\lim_{\beta \to \alpha}Aを求めよ。
\end{eqnarray}
2022九州大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ nを3以上の自然数、\alpha,\betaを相異なる実数とするとき、以下の問いに答えよ。\\
(1)次を満たす実数A,B,Cと整式Q(x)が存在することを示せ。\\
x^n=(x-\alpha)(x-\beta)^2Q(x)+A(x-\alpha)(x-\beta)+B(x-\alpha)+C\\
(2)(1)のA,B,Cをn,\alpha,\betaを用いて表せ。\\
(3)(2)のAについて、nと\alphaを固定して、\betaを\alphaに近づけたときの極限\\
\lim_{\beta \to \alpha}Aを求めよ。
\end{eqnarray}
2022九州大学理系過去問
福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ aを実数、0 \lt a \lt 1とし、f(x)=\log(1+x^2)-ax^2とする。以下の問いに答えよ。\\
(1)関数f(x)の極値を求めよ。\\
(2)f(1)=0とする。曲線y=f(x)とx軸で囲まれた図形の面積を求めよ。
\end{eqnarray}
2022神戸大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ aを実数、0 \lt a \lt 1とし、f(x)=\log(1+x^2)-ax^2とする。以下の問いに答えよ。\\
(1)関数f(x)の極値を求めよ。\\
(2)f(1)=0とする。曲線y=f(x)とx軸で囲まれた図形の面積を求めよ。
\end{eqnarray}
2022神戸大学理系過去問
福田の数学〜神戸大学2022年理系第2問〜無限等比級数の図形への応用
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ mを3以上の自然数、\theta=\frac{2\pi}{m}, C_1を半径1の円とする。\hspace{100pt}\\
円C_1に内接する(全ての頂点がC_1上にある)正m角形をP_1とし、\\
P_1に内接する(P_1の全ての辺と接する)円をC_2とする。\\
同様に、nを自然数とするとき、円C_nに内接する正m角形をP_nとし、\\
P_nに内接する円をC_{n+1}とする。C_nの半径をr_n,C_nの内側\\
でP_nの外側の部分の面積をs_nとし、f(m)=\sum_{n=1}^{\infty}s_nとする。以下の問いに答えよ。\\
(1)r_n,s_nの値を\theta,nを用いて表せ。\\
(2)f(m)の値を\thetaを用いて表せ。\\
(3)極限値\lim_{m \to \infty}f(m)を求めよ。\\
ただし必要があれば\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}を用いてよい。
\end{eqnarray}
2022神戸大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ mを3以上の自然数、\theta=\frac{2\pi}{m}, C_1を半径1の円とする。\hspace{100pt}\\
円C_1に内接する(全ての頂点がC_1上にある)正m角形をP_1とし、\\
P_1に内接する(P_1の全ての辺と接する)円をC_2とする。\\
同様に、nを自然数とするとき、円C_nに内接する正m角形をP_nとし、\\
P_nに内接する円をC_{n+1}とする。C_nの半径をr_n,C_nの内側\\
でP_nの外側の部分の面積をs_nとし、f(m)=\sum_{n=1}^{\infty}s_nとする。以下の問いに答えよ。\\
(1)r_n,s_nの値を\theta,nを用いて表せ。\\
(2)f(m)の値を\thetaを用いて表せ。\\
(3)極限値\lim_{m \to \infty}f(m)を求めよ。\\
ただし必要があれば\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}を用いてよい。
\end{eqnarray}
2022神戸大学理系過去問
福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限
単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 数列\left\{a_n\right\}をa_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)によって定める。\\
以下の問いに答えよ。\\
(1)全ての自然数nについてa_{n+1}=\frac{2}{\sqrt{a_n}}が成り立つことを示せ。\\
(2)数列\left\{b_n\right\}をb_n=\log a_n (n=1,2,3,\ldots)によって定める。\\
b_nの値をnを用いて表せ。\\
(3)極限値\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}
2022神戸大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ 数列\left\{a_n\right\}をa_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)によって定める。\\
以下の問いに答えよ。\\
(1)全ての自然数nについてa_{n+1}=\frac{2}{\sqrt{a_n}}が成り立つことを示せ。\\
(2)数列\left\{b_n\right\}をb_n=\log a_n (n=1,2,3,\ldots)によって定める。\\
b_nの値をnを用いて表せ。\\
(3)極限値\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}
2022神戸大学理系過去問
福田の数学〜大阪大学2022年理系第4問〜漸化式とはさみうちの原理
単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ f(x)=\log(x+1)+1とする。以下の問いに答えよ。\\
(1)方程式f(x)=xは、x \gt 0の範囲でただ1つの解を\\
もつことを示せ。\\
(2)(1)の解を\alphaとする。実数xが0 \lt x \lt \alphaを満たすならば、\\
次の不等式が成り立つことを示せ。\\
0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)\\
(3)数列\left\{x_n\right\}を\\
x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)\\
で定める。このとき、全ての自然数nに対して\\
\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)\\
が成り立つことを示せ。\\
(4)(3)の数列\left\{x_n\right\}について、\lim_{n \to \infty}x_n=\alphaを示せ。
\end{eqnarray}
2022大阪大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ f(x)=\log(x+1)+1とする。以下の問いに答えよ。\\
(1)方程式f(x)=xは、x \gt 0の範囲でただ1つの解を\\
もつことを示せ。\\
(2)(1)の解を\alphaとする。実数xが0 \lt x \lt \alphaを満たすならば、\\
次の不等式が成り立つことを示せ。\\
0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)\\
(3)数列\left\{x_n\right\}を\\
x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)\\
で定める。このとき、全ての自然数nに対して\\
\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)\\
が成り立つことを示せ。\\
(4)(3)の数列\left\{x_n\right\}について、\lim_{n \to \infty}x_n=\alphaを示せ。
\end{eqnarray}
2022大阪大学理系過去問
これの説明できますか?
福田の数学〜名古屋大学2022年理系第4問〜定積分の極限と方程式の解
単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 関数f(x)は区間x \geqq 0において連続な増加関数でf(0)=1を満たすとする。\\
ただしf(x)が区間x \geqq 0における増加関数であるとは、区間内の任意の実数x_1,x_2に対し\\
x_1 \lt x_2ならばf(x_1) \lt f(x_2)が成り立つ時をいう。以下、nは正の整数とする。\\
(1)\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty を示せ。\\
\\
(2)区間y \gt 2 において関数F_n(y)をF_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dxと定めるとき、\\
\\
\lim_{y \to \infty}F_n(y)=\inftyを示せ。また2+\frac{1}{n}より大きい実数a_nで\\
\\
\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0\\
\\
を満たすものがただ1つ存在することを示せ。\\
(3)(2)のa_nについて、不等式a_n \lt 4がすべてのnに対して成り立つことを示せ。
\end{eqnarray}
2022名古屋大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ 関数f(x)は区間x \geqq 0において連続な増加関数でf(0)=1を満たすとする。\\
ただしf(x)が区間x \geqq 0における増加関数であるとは、区間内の任意の実数x_1,x_2に対し\\
x_1 \lt x_2ならばf(x_1) \lt f(x_2)が成り立つ時をいう。以下、nは正の整数とする。\\
(1)\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty を示せ。\\
\\
(2)区間y \gt 2 において関数F_n(y)をF_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dxと定めるとき、\\
\\
\lim_{y \to \infty}F_n(y)=\inftyを示せ。また2+\frac{1}{n}より大きい実数a_nで\\
\\
\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0\\
\\
を満たすものがただ1つ存在することを示せ。\\
(3)(2)のa_nについて、不等式a_n \lt 4がすべてのnに対して成り立つことを示せ。
\end{eqnarray}
2022名古屋大学理系過去問
円は何角形ですか?
単元:
#関数と極限#数列の極限#平面図形その他#数学(高校生)#数Ⅲ
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
円は何角形でしょう?何角形から円となるでしょう?
この動画を見る
円は何角形でしょう?何角形から円となるでしょう?
福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内において、ベクトル\\
\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)\\
が定める直線\\
l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }\\
を考える。点A_1を原点(0,0,0)とし、点A_1から直線l'に下ろした垂線A_1B_1と\\
おく。次に、点B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })から直線lに下ろした垂線をB_1A_2とおく。\\
同様に、点A_k(s_k\overrightarrow{ a })から直線l'に下ろした垂線をA_kB_k、点B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })から直線l\\
に下ろした垂線をB_kA_{k+1}とする手順を繰り返して、点A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })\\
(nは正の整数)を定める。\\
(1)s_nを用いてs_{n+1}を表せ。\\
(2)極限値S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_nを求めよ。\\
(3)(2)で求めたS,Tに対して、点A,BをそれぞれA(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })とおくと、\\
直線ABは2直線l,l'の両方と直交することを示せ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内において、ベクトル\\
\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)\\
が定める直線\\
l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }\\
を考える。点A_1を原点(0,0,0)とし、点A_1から直線l'に下ろした垂線A_1B_1と\\
おく。次に、点B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })から直線lに下ろした垂線をB_1A_2とおく。\\
同様に、点A_k(s_k\overrightarrow{ a })から直線l'に下ろした垂線をA_kB_k、点B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })から直線l\\
に下ろした垂線をB_kA_{k+1}とする手順を繰り返して、点A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })\\
(nは正の整数)を定める。\\
(1)s_nを用いてs_{n+1}を表せ。\\
(2)極限値S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_nを求めよ。\\
(3)(2)で求めたS,Tに対して、点A,BをそれぞれA(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })とおくと、\\
直線ABは2直線l,l'の両方と直交することを示せ。
\end{eqnarray}
2022東北大学理系過去問
福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{3}}}\ 正の整数nに対して、\\
S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)\\
とする。\\
(1)正の実数xに対して、次の不等式が成り立つことを示せ。\\
\\
\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}\\
\\
(2)極限値\lim_{n \to \infty}S_nを求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{3}}}\ 正の整数nに対して、\\
S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)\\
とする。\\
(1)正の実数xに対して、次の不等式が成り立つことを示せ。\\
\\
\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}\\
\\
(2)極限値\lim_{n \to \infty}S_nを求めよ。
\end{eqnarray}
2022東北大学理系過去問
いくつでしょうか?
単元:
#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 2^{\frac{1}{4}}・ 4^{\frac{1}{8}}・8^{\frac{1}{16}}・16^{\frac{1}{32}}……\infty $
これを解け.
この動画を見る
$ 2^{\frac{1}{4}}・ 4^{\frac{1}{8}}・8^{\frac{1}{16}}・16^{\frac{1}{32}}……\infty $
これを解け.
極限ってこういうこと?
根号を含む方程式
単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-5=\sqrt{x+5}$
実数解を求めよ
この動画を見る
$x^2-5=\sqrt{x+5}$
実数解を求めよ
こう見えても高校内容です。
原始ピタゴラス数を探せ
【数Ⅲ】極限:極限の定形不定形をマスターしよう!
単元:
#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
この動画を見る
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
数3を使わずに分数関数の最小値を求める
単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x$は正の実数である.
$\dfrac{x^2+x+196}{x+1}$は$x=\Box$のとき,最小値$\Box$となる.
$\Box$を求めよ.
この動画を見る
$x$は正の実数である.
$\dfrac{x^2+x+196}{x+1}$は$x=\Box$のとき,最小値$\Box$となる.
$\Box$を求めよ.
【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します
福田のわかった数学〜高校3年生理系090〜グラフを描こう(12)無理関数、凹凸、漸近線
単元:
#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう。(12)\hspace{120pt}\\
y=\sqrt[3]{x^3-x^2} のグラフを描け。ただし凹凸、漸近線も調べよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう。(12)\hspace{120pt}\\
y=\sqrt[3]{x^3-x^2} のグラフを描け。ただし凹凸、漸近線も調べよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線
単元:
#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(11)\hspace{120pt}\\
\\
y=\frac{x^3}{x^2-1} のグラフを描け。ただし、凹凸、漸近線も調べよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(11)\hspace{120pt}\\
\\
y=\frac{x^3}{x^2-1} のグラフを描け。ただし、凹凸、漸近線も調べよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系088〜グラフを描こう(10)分数関数、凹凸、漸近線
単元:
#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(10)\hspace{50pt}\\
\\
y=\frac{e^x}{x-1} \\
\\
のグラフを描け。ただし凹凸、漸近線を調べよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(10)\hspace{50pt}\\
\\
y=\frac{e^x}{x-1} \\
\\
のグラフを描け。ただし凹凸、漸近線を調べよ。
\end{eqnarray}
自然数無限に足すとマイナスになるみたい...
【困難は分割せよ!】関数:ラ・サール高等学校~全国入試問題解法
単元:
#数学(中学生)#関数(分数関数・無理関数・逆関数と合成関数)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 ラ・サール高等学校
$-1 \leqq x \leqq 2, 3 \leqq y \leqq 4$
のとき、
$x^2y-y$
の最大値と最小値を求めよ。
この動画を見る
入試問題 ラ・サール高等学校
$-1 \leqq x \leqq 2, 3 \leqq y \leqq 4$
のとき、
$x^2y-y$
の最大値と最小値を求めよ。
福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減
単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} Oを原点とする座標平面上の曲線\ y=\log xをCとする。正の実数\ tに対し、\hspace{30pt}\\
曲線C上の点P(t,\log t)におけるCの法線Lの傾きは\boxed{\ \ か\ \ }である。Lに平行な\\
単位ベクトル\ \overrightarrow{ n }\ で、その\ x\ 成分が正であるものは\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })である。\\
さらに、rを正の定数とし、点Qを\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }により定めると、\\
Qの座標は(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })となる。ここで点Qのx座標とy座標をtの関数と見て、\\
それぞれX(t),\ Y(t)とおくとX(t),\ Y(t)の導関数を成分とするベクトル(X'(t),\ Y'(t))\\
はrによらないベクトル(1,\ \boxed{\ \ さ\ \ })と平行であるか、零ベクトルである。\\
定数rの取り方によって関数X(t)の増減の様子は変わる。X(t)が区間\ t \gt 0で\\
常に増加するようなrの値の範囲は\boxed{\ \ し\ \ }である。また、r=2\sqrt2のとき、X(t)は\\
区間\ \boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }で減少し、区間\ 0 \lt t \leqq \boxed{\ \ す\ \ }と区間\ t \geqq \boxed{\ \ せ\ \ }で増加する。
\end{eqnarray}
2021明治大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} Oを原点とする座標平面上の曲線\ y=\log xをCとする。正の実数\ tに対し、\hspace{30pt}\\
曲線C上の点P(t,\log t)におけるCの法線Lの傾きは\boxed{\ \ か\ \ }である。Lに平行な\\
単位ベクトル\ \overrightarrow{ n }\ で、その\ x\ 成分が正であるものは\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })である。\\
さらに、rを正の定数とし、点Qを\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }により定めると、\\
Qの座標は(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })となる。ここで点Qのx座標とy座標をtの関数と見て、\\
それぞれX(t),\ Y(t)とおくとX(t),\ Y(t)の導関数を成分とするベクトル(X'(t),\ Y'(t))\\
はrによらないベクトル(1,\ \boxed{\ \ さ\ \ })と平行であるか、零ベクトルである。\\
定数rの取り方によって関数X(t)の増減の様子は変わる。X(t)が区間\ t \gt 0で\\
常に増加するようなrの値の範囲は\boxed{\ \ し\ \ }である。また、r=2\sqrt2のとき、X(t)は\\
区間\ \boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }で減少し、区間\ 0 \lt t \leqq \boxed{\ \ す\ \ }と区間\ t \geqq \boxed{\ \ せ\ \ }で増加する。
\end{eqnarray}
2021明治大学理工学部過去問
福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ
単元:
#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(1)\\
\\
y=\frac{x^2}{x-1}\ のグラフを描け。\\
\\
ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(1)\\
\\
y=\frac{x^2}{x-1}\ のグラフを描け。\\
\\
ただし凹凸は調べなくてよい。
\end{eqnarray}
福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限
単元:
#関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)\ k \gt 0として、次の定積分を考える。\hspace{130pt}\\
F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx\\
このとき、F(2)=\log(\boxed{\ \ ア\ \ })となる。また、\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
⓪\ \frac{e+1}{e} ①\ \frac{e^2+1}{e} ②\ \frac{e^4+1}{e} ③\ \frac{e^6+1}{e} ④\ \frac{e^8+1}{e}\\
⑤\ \frac{e+1}{2e} ⑥\ \frac{e^2+1}{2e} ⑦\ \frac{e^4+1}{2e} ⑧\ \frac{e^6+1}{2e} ⑨\ \frac{e^8+1}{2e}
\end{eqnarray}
2021明治大学全統過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} (1)\ k \gt 0として、次の定積分を考える。\hspace{130pt}\\
F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx\\
このとき、F(2)=\log(\boxed{\ \ ア\ \ })となる。また、\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
⓪\ \frac{e+1}{e} ①\ \frac{e^2+1}{e} ②\ \frac{e^4+1}{e} ③\ \frac{e^6+1}{e} ④\ \frac{e^8+1}{e}\\
⑤\ \frac{e+1}{2e} ⑥\ \frac{e^2+1}{2e} ⑦\ \frac{e^4+1}{2e} ⑧\ \frac{e^6+1}{2e} ⑨\ \frac{e^8+1}{2e}
\end{eqnarray}
2021明治大学全統過去問
【数Ⅲ】極限:関数の極限 ガウス記号を含む極限
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極限を調べよう。
(1)$\displaystyle \lim_{x\to 2}[x],$
(2)$\displaystyle \lim_{x\to 1}([2x]-[x])$
この動画を見る
次の極限を調べよう。
(1)$\displaystyle \lim_{x\to 2}[x],$
(2)$\displaystyle \lim_{x\to 1}([2x]-[x])$