微分法
福田のわかった数学〜高校3年生理系060〜微分(5)陰関数の微分(2)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(5) 陰関数の微分(2)
$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 上の点$(p,q)$での接線の方程式
は $\frac{px}{a^2}+\frac{qy}{b^2}=1$ であることを示せ。
この動画を見る
数学$\textrm{III}$ 微分(5) 陰関数の微分(2)
$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 上の点$(p,q)$での接線の方程式
は $\frac{px}{a^2}+\frac{qy}{b^2}=1$ であることを示せ。
【数学Ⅲ/微分】三角関数の微分②(積の微分、2倍角の公式など)
単元:
#三角関数#微分法#数学(高校生)#数Ⅲ
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$
(2)
$y=x\sin3x$
(3)
$y=\sin x\cos x$
この動画を見る
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$
(2)
$y=x\sin3x$
(3)
$y=\sin x\cos x$
【数学Ⅲ/微分】三角関数の微分①(合成関数の微分)
単元:
#微分法#数Ⅲ
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\sin x-\tan x$
(2)
$y=\cos(3x+1)$
(3)
$y=\cos x^2$
(4)
$y=\sin^3x$
この動画を見る
次の関数を微分せよ。
(1)
$y=\sin x-\tan x$
(2)
$y=\cos(3x+1)$
(3)
$y=\cos x^2$
(4)
$y=\sin^3x$
福田のわかった数学〜高校3年生理系059〜微分(4)陰関数の微分
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(4) 陰関数の微分
$\frac{x^2}{4}-\frac{y^2}{9}=1$について$\frac{dy}{dx},\frac{d^2y}{dx^2}$を
$x$と$y$を用いて表せ。ただし、$y\neq 0$とする。
この動画を見る
数学$\textrm{III}$ 微分(4) 陰関数の微分
$\frac{x^2}{4}-\frac{y^2}{9}=1$について$\frac{dy}{dx},\frac{d^2y}{dx^2}$を
$x$と$y$を用いて表せ。ただし、$y\neq 0$とする。
福田のわかった数学〜高校3年生理系057〜微分(2)逆関数の微分
単元:
#微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(2) 逆関数の微分
$y=\tan x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$
の逆関数の第2次導関数を求めよ。
この動画を見る
数学$\textrm{III}$ 微分(2) 逆関数の微分
$y=\tan x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$
の逆関数の第2次導関数を求めよ。
福田のわかった数学〜高校3年生理系054〜連続と微分可能(5)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 連続と微分可能(5)
$f(x)=\left\{
\begin{array}{1}
x^3+px (x \geqq 2)\\
qx^2-px (x \lt 2)
\end{array}\right.$
が$x=2$に
おいて微分可能となる$p,q$を求めよ。
この動画を見る
数学$\textrm{III}$ 連続と微分可能(5)
$f(x)=\left\{
\begin{array}{1}
x^3+px (x \geqq 2)\\
qx^2-px (x \lt 2)
\end{array}\right.$
が$x=2$に
おいて微分可能となる$p,q$を求めよ。
福田のわかった数学〜高校3年生理系053〜極限(53)連続と微分可能(4)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 連続と微分可能(4)
$f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x\neq 0)
0 (x=0)
\end{array}\right.$ の$x=0$に
おける連続性、微分可能性を調べよ。
この動画を見る
数学$\textrm{III}$ 連続と微分可能(4)
$f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x\neq 0)
0 (x=0)
\end{array}\right.$ の$x=0$に
おける連続性、微分可能性を調べよ。
福田のわかった数学〜高校3年生理系052〜極限(52)連続と微分可能(3)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 連続と微分可能(3)
$f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)\\
\end{array}\right.$ の$x=0$に
おける連続性、微分可能性を調べよ。
この動画を見る
数学$\textrm{III}$ 連続と微分可能(3)
$f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)\\
\end{array}\right.$ の$x=0$に
おける連続性、微分可能性を調べよ。
福田のわかった数学〜高校3年生理系051〜極限(51)連続と微分可能(2)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$連続と微分可能(2)
$f(x)=\left\{\begin{array}{1}
\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)
\end{array}\right.$
の$x=0$に
おける連続性、微分可能性を調べよ。
この動画を見る
数学$\textrm{III}$連続と微分可能(2)
$f(x)=\left\{\begin{array}{1}
\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)
\end{array}\right.$
の$x=0$に
おける連続性、微分可能性を調べよ。
福田のわかった数学〜高校3年生理系050〜極限(50)連続と微分可能(1)
単元:
#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$
連続と微分可能(1)
$f(x)$が$x=a$で微分可能 $\Rightarrow f(x)$は$x=a$で連続
を示せ。また、逆が成り立たないことを示せ。
この動画を見る
数学$\textrm{III}$
連続と微分可能(1)
$f(x)$が$x=a$で微分可能 $\Rightarrow f(x)$は$x=a$で連続
を示せ。また、逆が成り立たないことを示せ。
数学「大学入試良問集」【18−8 微分係数の定義】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\sin\ x$について$x=a$における微分係数は$\cos\ a$であるが、これを定義に従って求めてみよう。
そのために次の順序で各問いに答えよ。
(1)
$0 \lt x \lt \displaystyle \frac{\pi}{2}$のとき$0 \lt \sin\ x \lt x \lt \tan\ x$が成り立つことを図を用いて説明せよ。
(図は座標平面上の原点を中心とする半径1の円の第1象限の部分を用いよ。)
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x}{x}=1,\ \displaystyle \lim_{ x \to 0 }\displaystyle \frac{1-\cos\ x}{x}=0$を示せ。
(3)
関数$f(x)$の$x=a$における微分係数$f'(a)$の定義を述べ、その定義に従って$f(x)=\sin\ x$の場合に$f'(a)$を求めよ。
この動画を見る
$\sin\ x$について$x=a$における微分係数は$\cos\ a$であるが、これを定義に従って求めてみよう。
そのために次の順序で各問いに答えよ。
(1)
$0 \lt x \lt \displaystyle \frac{\pi}{2}$のとき$0 \lt \sin\ x \lt x \lt \tan\ x$が成り立つことを図を用いて説明せよ。
(図は座標平面上の原点を中心とする半径1の円の第1象限の部分を用いよ。)
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x}{x}=1,\ \displaystyle \lim_{ x \to 0 }\displaystyle \frac{1-\cos\ x}{x}=0$を示せ。
(3)
関数$f(x)$の$x=a$における微分係数$f'(a)$の定義を述べ、その定義に従って$f(x)=\sin\ x$の場合に$f'(a)$を求めよ。
対数関数の微分公式
福田の数学〜早稲田大学2021年商学部第1問(2)〜整式と不等式
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)nを正の整数とする。f(x)はxのn+1次式で表される関数で、xが0以上\\
n以下の整数のときf(x)=0であり、f(n+1)=n+1である。このとき、\\
\\
\sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}\\
\\
を満たす最小のnは\boxed{\ \ イ\ \ }である。
\end{eqnarray}
2021早稲田大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)nを正の整数とする。f(x)はxのn+1次式で表される関数で、xが0以上\\
n以下の整数のときf(x)=0であり、f(n+1)=n+1である。このとき、\\
\\
\sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}\\
\\
を満たす最小のnは\boxed{\ \ イ\ \ }である。
\end{eqnarray}
2021早稲田大学商学部過去問
【数Ⅲ】微分法:sinを微分するとどうなる??グラフのイメージでサクッとわかる♪
福田のわかった数学〜高校3年生理系022〜極限(22)関数の極限、三角関数の極限(2)
単元:
#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(2)
$\sin x$ を定義に従って微分せよ。
この動画を見る
数学$\textrm{III}$ 三角関数の極限(2)
$\sin x$ を定義に従って微分せよ。
福田の数学〜早稲田大学2021年理工学部第1問〜2直線のなす角の最小
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。
(2)$\tan\angle APB$を$t$を用いて表せ。
(3)$\angle APB$を最小にする$t$の値を求めよ。
2021早稲田大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。
(2)$\tan\angle APB$を$t$を用いて表せ。
(3)$\angle APB$を最小にする$t$の値を求めよ。
2021早稲田大学理工学部過去問
【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
この動画を見る
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
福田の数学〜慶應義塾大学2021年理工学部第4問〜はさみうちの原理と区分求積
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。
(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。
(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
この動画を見る
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。
(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。
(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x-(t^2+2)y+4t+2=0$
を考える。
(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。
(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。
(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。
2021慶應義塾大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x-(t^2+2)y+4t+2=0$
を考える。
(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。
(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。
(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。
2021慶應義塾大学理工学部過去問
2021藤田医科大 微分の公式
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=\sqrt{x+\sqrt{x^2-9}}$
$f`_{(5)}=\Box$
$\Box$を求めよ.
2021藤田医科大過去問
この動画を見る
$f(x)=\sqrt{x+\sqrt{x^2-9}}$
$f`_{(5)}=\Box$
$\Box$を求めよ.
2021藤田医科大過去問
弘前大 微分
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
関数$y=f(x)$において($x=a$で微分可能)$\displaystyle \lim_{x\to a}\dfrac{x^2 f(x)-a^2 f(a)}{x^2-a^2}$を$a,f(a),f`(a)$を用いて表せ.
弘前大過去問
この動画を見る
関数$y=f(x)$において($x=a$で微分可能)$\displaystyle \lim_{x\to a}\dfrac{x^2 f(x)-a^2 f(a)}{x^2-a^2}$を$a,f(a),f`(a)$を用いて表せ.
弘前大過去問
【数Ⅲ-177(最終回)】速度と道のり②(平面運動編)
単元:
#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり②・平面運動編)
ポイント
平面上を運動する点$P$の座標$(x,y)$が、時刻$t$の関数$x=f(t)$、$y=g(t)$で表されるとき、 点$P$が時刻$t=a$から$t=b$までの間に通過する道のり$S$は
$S=$ ①
②
平面上を動く点$P$の時刻における座標$(x,y)$が$x=t-\sin t$、$y=1-\cos t$で与えられている。
このとき、$t=0$から$t=\pi$までの間に点$P$の動いた道のりを求めよ。
この動画を見る
数Ⅲ(速度と道のり②・平面運動編)
ポイント
平面上を運動する点$P$の座標$(x,y)$が、時刻$t$の関数$x=f(t)$、$y=g(t)$で表されるとき、 点$P$が時刻$t=a$から$t=b$までの間に通過する道のり$S$は
$S=$ ①
②
平面上を動く点$P$の時刻における座標$(x,y)$が$x=t-\sin t$、$y=1-\cos t$で与えられている。
このとき、$t=0$から$t=\pi$までの間に点$P$の動いた道のりを求めよ。
【数Ⅲ-176】速度と道のり①(直線運動編)
単元:
#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり①・直線運動編)
ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は
位置の変化$S=$ ①
道のり$l=$ ➁
Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
この動画を見る
数Ⅲ(速度と道のり①・直線運動編)
ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は
位置の変化$S=$ ①
道のり$l=$ ➁
Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
【数Ⅲ-175】曲線の長さ②(媒介変数表示編)
単元:
#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ②・媒介変数表示編)
ポイント
曲線$x=f(t)$、$y=g(t) (a \leqq t \leqq b)$ の長さ$L$は $L=$①
②曲線$x=a\cos^3θ、y=a \sin^3θ (0 \leqq θ \leqq \frac{\pi}{2})$の長さを求めよ。
ただし$a \gt 0$とする。
この動画を見る
数Ⅲ(曲線の長さ②・媒介変数表示編)
ポイント
曲線$x=f(t)$、$y=g(t) (a \leqq t \leqq b)$ の長さ$L$は $L=$①
②曲線$x=a\cos^3θ、y=a \sin^3θ (0 \leqq θ \leqq \frac{\pi}{2})$の長さを求めよ。
ただし$a \gt 0$とする。
【数Ⅲ-174】曲線の長さ①(基本編)
単元:
#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ①・基本編)
ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①
②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。
③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
この動画を見る
数Ⅲ(曲線の長さ①・基本編)
ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①
②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。
③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
18愛知県教員採用試験(数学:9番 微分と曲線の長さ)
単元:
#微分とその応用#積分とその応用#微分法#定積分#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
9⃣ $x=\sqrt 3 t^2 , y = \frac{1}{3}t^3-3t$ $(0 \leqq t \leqq 1)$
(1)$\frac{d^2y}{dx^2}$
(2)曲線の長さl
この動画を見る
9⃣ $x=\sqrt 3 t^2 , y = \frac{1}{3}t^3-3t$ $(0 \leqq t \leqq 1)$
(1)$\frac{d^2y}{dx^2}$
(2)曲線の長さl
14大阪府教員採用試験(数学:高3-2番 微分)
14大阪府教員採用試験(数学:高3-1番 微分)
単元:
#微分とその応用#微分法#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
3⃣
(1)$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
logx \quad x \geqq 1 \\
ax^2+bx+1 \quad x<1
\end{array}
\right.
\end{eqnarray}$
x=1で微分可能となるようにa,bの値を定めよ。
$(i) \displaystyle \lim_{ x \to 1 } f(x) = f(1)$
$(ii)f'(1)$が存在する
この動画を見る
3⃣
(1)$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
logx \quad x \geqq 1 \\
ax^2+bx+1 \quad x<1
\end{array}
\right.
\end{eqnarray}$
x=1で微分可能となるようにa,bの値を定めよ。
$(i) \displaystyle \lim_{ x \to 1 } f(x) = f(1)$
$(ii)f'(1)$が存在する
19神奈川県教員採用試験(数学:11番 ひたすら微分)
単元:
#微分とその応用#微分法#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{11}$ $y=\frac{e^x}{e^x+a}$は変曲点をただ1つだけもつ。変曲点のy座標を求めよ。
この動画を見る
$\boxed{11}$ $y=\frac{e^x}{e^x+a}$は変曲点をただ1つだけもつ。変曲点のy座標を求めよ。
10奈良県教員採用試験(数学:6番 微分・微分方程式)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
6⃣$f(x+y)=f(x)f(y),f'(0)a≠0$
(1)f(0)を求めよ。
(2)y=f(x)は微分可能を」示し、関数f(x)を求めよ。
この動画を見る
6⃣$f(x+y)=f(x)f(y),f'(0)a≠0$
(1)f(0)を求めよ。
(2)y=f(x)は微分可能を」示し、関数f(x)を求めよ。