積分とその応用
【数Ⅲ-171】積分と体積②(断面積編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積②、断面積編)
ポイント
座標が$x$の点を通る$x$軸に垂直な平面による立体の切り口の面積を$S(x)$とするとき、
2平面$x=a$、$x=b$の間にある立体の体積$V$は$V=$①。
②$xy$平面上に2点P$(x,0)$、Q$(x,\sin x)$をとり、PQを斜辺とする直角二等辺三角形PQRを、$x$軸に垂直な平面上に図のようにつくる。
Pが$x$軸上を原点oから点A$(\pi,0)$まで動くとき、この直角二等辺三角形が通過してできる立体の 体積を求めよ。
この動画を見る
数Ⅲ(積分と体積②、断面積編)
ポイント
座標が$x$の点を通る$x$軸に垂直な平面による立体の切り口の面積を$S(x)$とするとき、
2平面$x=a$、$x=b$の間にある立体の体積$V$は$V=$①。
②$xy$平面上に2点P$(x,0)$、Q$(x,\sin x)$をとり、PQを斜辺とする直角二等辺三角形PQRを、$x$軸に垂直な平面上に図のようにつくる。
Pが$x$軸上を原点oから点A$(\pi,0)$まで動くとき、この直角二等辺三角形が通過してできる立体の 体積を求めよ。
18神奈川県教員採用試験(数学:11番 区分求積法)
単元:
#積分とその応用#定積分#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{11}$
$\displaystyle \lim_{ n \to m } \frac{1}{n} ( \sqrt{\frac{n+1}{n}} + \sqrt{\frac{n+2}{n}} + \cdots +\sqrt{\frac{n+n}{n}})$
この動画を見る
$\boxed{11}$
$\displaystyle \lim_{ n \to m } \frac{1}{n} ( \sqrt{\frac{n+1}{n}} + \sqrt{\frac{n+2}{n}} + \cdots +\sqrt{\frac{n+n}{n}})$
【数Ⅲ-170】積分と体積①(基本編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積①・基本編)
ポイント
曲線$y=f(x)$と$x$軸と$x=a$、$x=b(a<b)$で囲まれた部分を
$x$軸のまわりに1回転してできる回転体の体積$V$は①。
②$y=e^x$、$x$軸、$x=1$、$x=2$で囲まれた部分を、$x$軸のまわりに1回転してできる立体の体積
③$x=y^2-1$、$y$軸で囲まれた部分を、$y$軸のまわりに1回転してできる立体の体積
この動画を見る
数Ⅲ(積分と体積①・基本編)
ポイント
曲線$y=f(x)$と$x$軸と$x=a$、$x=b(a<b)$で囲まれた部分を
$x$軸のまわりに1回転してできる回転体の体積$V$は①。
②$y=e^x$、$x$軸、$x=1$、$x=2$で囲まれた部分を、$x$軸のまわりに1回転してできる立体の体積
③$x=y^2-1$、$y$軸で囲まれた部分を、$y$軸のまわりに1回転してできる立体の体積
12大阪府教員採用試験(数学:2番 微分積分)
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
2⃣
(1)$x \geqq 1$, $e^x >x^2$を示せ
(2)$\displaystyle \lim_{ x \to \infty } \int_1^x t e^{-t} dt$
この動画を見る
2⃣
(1)$x \geqq 1$, $e^x >x^2$を示せ
(2)$\displaystyle \lim_{ x \to \infty } \int_1^x t e^{-t} dt$
【数Ⅲ-167】積分と面積③(三角関数編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積③・三角関数編)
Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。
①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
この動画を見る
数Ⅲ(積分と面積③・三角関数編)
Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。
①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
【数Ⅲ-166】積分と面積②(やや複雑編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積②・やや複雑編)
Q
次の曲線と直線で囲まれた部分の面積を求めよ。
①曲線$x=y^2-1$、直線$x-y-1=0$
②2曲線$y=x^2$、$y=\frac{2x}{x^2+1}$
この動画を見る
数Ⅲ(積分と面積②・やや複雑編)
Q
次の曲線と直線で囲まれた部分の面積を求めよ。
①曲線$x=y^2-1$、直線$x-y-1=0$
②2曲線$y=x^2$、$y=\frac{2x}{x^2+1}$
【数Ⅲ-165】積分と面積①(基本編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積①・基本編)
Q
次の曲線と直線で囲まれた部分の面積を求めよ。
①$y=\sqrt{x}$、$x=1$、$x=4$、$x$軸
②$y=\log x$、$y=2$、$x$軸、$y$軸
③$y=x^2$、$y=2x+3$
この動画を見る
数Ⅲ(積分と面積①・基本編)
Q
次の曲線と直線で囲まれた部分の面積を求めよ。
①$y=\sqrt{x}$、$x=1$、$x=4$、$x$軸
②$y=\log x$、$y=2$、$x$軸、$y$軸
③$y=x^2$、$y=2x+3$
【数Ⅲ-164】定積分と不等式の証明
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分と不等式の証明)
①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
この動画を見る
数Ⅲ(定積分と不等式の証明)
①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
【数Ⅲ-163】区分求積法②
単元:
#数学(中学生)#積分とその応用#面積・体積・長さ・速度#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分求積法②)
Q.次の極限値を求めよ。
①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
この動画を見る
数Ⅲ(微分求積法②)
Q.次の極限値を求めよ。
①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
【数Ⅲ-162】区分求積法①
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(区分求積法①)
ポイント
$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=1}^{n} f(\frac{k}{n})=\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=0}^{n-1} f(\frac{k}{n})=$①
Q.次の極限値を求めよ。
➁$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(\frac{1}{n})^2}+(\frac{2}{n})^2+…(\frac{n}{n})^2\}$
③$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(1+\frac{1}{n})^2}+(1+\frac{2}{n})^2+…(1+\frac{n}{n})^2\}$
この動画を見る
数Ⅲ(区分求積法①)
ポイント
$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=1}^{n} f(\frac{k}{n})=\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=0}^{n-1} f(\frac{k}{n})=$①
Q.次の極限値を求めよ。
➁$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(\frac{1}{n})^2}+(\frac{2}{n})^2+…(\frac{n}{n})^2\}$
③$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(1+\frac{1}{n})^2}+(1+\frac{2}{n})^2+…(1+\frac{n}{n})^2\}$
18神奈川県教員採用試験(数学:11番 区分求積法)
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\fbox{ 11 }$
$\displaystyle \lim_{ n \to \infty } \frac{1}{n}(\sqrt{\frac{n+1}{n}} +\sqrt{\frac{n+2}{n}} + \cdots +\sqrt{\frac{n+n}{n}})$
この動画を見る
$\fbox{ 11 }$
$\displaystyle \lim_{ n \to \infty } \frac{1}{n}(\sqrt{\frac{n+1}{n}} +\sqrt{\frac{n+2}{n}} + \cdots +\sqrt{\frac{n+n}{n}})$
【数Ⅲ-161】定積分で表された関数④(最大最小編)
単元:
#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数④・最大最小編)
①関数$f(x)=\int_0^1(e^t-xt)^2dt$の最小値とそのときの$x$の値を求めよ。
②積分$\int_0^\frac{\pi}{2}(\sin x-kx)^2dx$の値を最小にする実数$k$の値と、そのときの積分値を求めよ。
この動画を見る
数Ⅲ(定積分で表された関数④・最大最小編)
①関数$f(x)=\int_0^1(e^t-xt)^2dt$の最小値とそのときの$x$の値を求めよ。
②積分$\int_0^\frac{\pi}{2}(\sin x-kx)^2dx$の値を最小にする実数$k$の値と、そのときの積分値を求めよ。
【数Ⅲ-160】定積分で表された関数③(極値編)
単元:
#微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数③・極値編)
Q.次の関数の極値を求めよ。
①$f(x)=\int_0^xt\cos t \ dt(0 \lt x \lt \pi)$
➁$f(x)=\int_0^x (1-t^2)e^tdt$
この動画を見る
数Ⅲ(定積分で表された関数③・極値編)
Q.次の関数の極値を求めよ。
①$f(x)=\int_0^xt\cos t \ dt(0 \lt x \lt \pi)$
➁$f(x)=\int_0^x (1-t^2)e^tdt$
【数Ⅲ-159】定積分で表された関数②
単元:
#微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数➁)
Q.次の等式を満たす関数$f(x)$を求めよ。
①$f(x)=\frac{1}{x}+\int_1^2 tf(t)dt$
➁$f(x)=x+\int_0^1 f(t)e^tdt$
③$\int_1^x (x-t)f(x)dt=x^4-2x^2+3$
この動画を見る
数Ⅲ(定積分で表された関数➁)
Q.次の等式を満たす関数$f(x)$を求めよ。
①$f(x)=\frac{1}{x}+\int_1^2 tf(t)dt$
➁$f(x)=x+\int_0^1 f(t)e^tdt$
③$\int_1^x (x-t)f(x)dt=x^4-2x^2+3$
【数Ⅲ-158】定積分で表された関数①
単元:
#微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。
①$\int_a^x \frac{t}{1+e^{2t}}dt$
➁$\int_0^{x} (x-t)e^{2t}dt$
③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。
①$\int_a^x \frac{t}{1+e^{2t}}dt$
➁$\int_0^{x} (x-t)e^{2t}dt$
③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
【数Ⅲ-157】定積分の部分積分法③
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ
①$\int_1^{e} (\log x)^2dx$
➁$\int_0^{\frac{\pi}{2}}x^2 \cos^2 x \ dx$
この動画を見る
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ
①$\int_1^{e} (\log x)^2dx$
➁$\int_0^{\frac{\pi}{2}}x^2 \cos^2 x \ dx$
【数Ⅲ-155】定積分の部分積分法①
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ。
①$\int_0^{\pi}x \sin x\ dx$
➁$\int_0^{1}xe^{-2x}\ dx$
③$\int_1^e\log x\ dx$
この動画を見る
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ。
①$\int_0^{\pi}x \sin x\ dx$
➁$\int_0^{1}xe^{-2x}\ dx$
③$\int_1^e\log x\ dx$
【数Ⅲ-154】定積分の置換積分法③
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法③)
Q次の定積分を求めよ。
①$\int_{-\frac{\pi}{3}}^\frac{\pi}{3}x^2\sin x \ dx$
➁$\int_{-1}^1\frac{1-x}{1+x^2} \ dx$
③$\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\cos^3 x \ dx$
この動画を見る
数Ⅲ(定積分の置換積分法③)
Q次の定積分を求めよ。
①$\int_{-\frac{\pi}{3}}^\frac{\pi}{3}x^2\sin x \ dx$
➁$\int_{-1}^1\frac{1-x}{1+x^2} \ dx$
③$\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\cos^3 x \ dx$
【数Ⅲ-153】定積分の置換積分法②(偶関数と奇関数)
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法➁・偶数関数と奇関数)
Q次の定積分を求めよ。
①$\int_{-2}^2\sqrt{4-x^2} \ dx$
➁$\int_{-\pi}^\pi\sin x\ dx$
③$\int_{-1}^1 (x^4-5x^3+4x-2)\ dx$
この動画を見る
数Ⅲ(定積分の置換積分法➁・偶数関数と奇関数)
Q次の定積分を求めよ。
①$\int_{-2}^2\sqrt{4-x^2} \ dx$
➁$\int_{-\pi}^\pi\sin x\ dx$
③$\int_{-1}^1 (x^4-5x^3+4x-2)\ dx$
【高校数学】部分分数分解の分母に二乗があるパターン
単元:
#恒等式・等式・不等式の証明#数列とその和(等差・等比・階差・Σ)#積分とその応用#不定積分#数学(高校生)
指導講師:
受験メモ山本
問題文全文(内容文):
部分分数分解の分母に二乗がある場合の解説動画です
この動画を見る
部分分数分解の分母に二乗がある場合の解説動画です
東北大 積分
単元:
#微分とその応用#積分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=-x^3-2x^2+a$と$y=x^3-16x$は$x$座標が負の点で共有点をもち、その点で共通接線をもつ。
$a$の値と囲まれた面積を求めよ
出典:1996年東北大学 過去問
この動画を見る
$y=-x^3-2x^2+a$と$y=x^3-16x$は$x$座標が負の点で共有点をもち、その点で共通接線をもつ。
$a$の値と囲まれた面積を求めよ
出典:1996年東北大学 過去問
光文社新書「中学の知識でオイラーの公式がわかる」Vol.7積の微分の公式証明
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
積の微分の公式証明解説動画です
この動画を見る
積の微分の公式証明解説動画です
この問題解けますか。
単元:
#積分とその応用#定積分#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$f(x)=\int_0^2{3x^2-xf(t)}dt$を満たす$f(x)$を求めよ
この動画を見る
$f(x)=\int_0^2{3x^2-xf(t)}dt$を満たす$f(x)$を求めよ
茨城大 3次関数と接線 積分 1/12公式導出
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-4x$と$(a,f(a))$における接線とで囲まれた面積$(a \neq 0)$
出典:1994年茨城大学 過去問
この動画を見る
$f(x)=x^3-4x$と$(a,f(a))$における接線とで囲まれた面積$(a \neq 0)$
出典:1994年茨城大学 過去問
福島大 1/6公式証明
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=2x-x^2$と$x$軸とで囲まれる面積を$(2,0)$を通る直線が二等分する直線の傾きを求めよ
出典:1993年福島大学 過去問
この動画を見る
$y=2x-x^2$と$x$軸とで囲まれる面積を$(2,0)$を通る直線が二等分する直線の傾きを求めよ
出典:1993年福島大学 過去問
ヨビノリのマンデー積分をぶっ飛ばせ!刺客は本人
単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ
出典:2019年九州大学 過去問
この動画を見る
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ
出典:2019年九州大学 過去問
積分で面積が出る理由 もっちゃんと学ぶ数学シリーズ
【数Ⅲ-152】定積分の置換積分法①
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法①)
Q.次の定積分を求めよ。
①$\int_{-2}^1(2x+1)^4 dx$
➁$\int_{0}^3(5x+2)\sqrt{x+1} \ dx$
③$\int_{1}^2 \frac{x-1}{x^2-2x+2}\ dx$
この動画を見る
数Ⅲ(定積分の置換積分法①)
Q.次の定積分を求めよ。
①$\int_{-2}^1(2x+1)^4 dx$
➁$\int_{0}^3(5x+2)\sqrt{x+1} \ dx$
③$\int_{1}^2 \frac{x-1}{x^2-2x+2}\ dx$
ヨビノリのマンデー積分をぶっ飛ばせ!ヨビノリ編集担当やすさん乱入
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)$を遇関数とする $a \gt 0$
(1)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{f(x)}{e^x+1}dx=\displaystyle \int_{0}^{ a }f(x)dx$を示せ
(2)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{x^2 \cos x+e^x}{e^x+1}dx$を求めよ
出典:信州大学医学部 過去問
この動画を見る
$f(x)$を遇関数とする $a \gt 0$
(1)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{f(x)}{e^x+1}dx=\displaystyle \int_{0}^{ a }f(x)dx$を示せ
(2)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{x^2 \cos x+e^x}{e^x+1}dx$を求めよ
出典:信州大学医学部 過去問
【数Ⅲ-151】定積分③(レベルアップ編)
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分③・レベルアップ編)
Q.次の定積分を求めよ。
①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$
➁$\int_{0}^\pi |cosx |\ dx$
③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
この動画を見る
数Ⅲ(定積分③・レベルアップ編)
Q.次の定積分を求めよ。
①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$
➁$\int_{0}^\pi |cosx |\ dx$
③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$