数C

福田の数学〜東北大学2024年理系第4問〜2つの球面の交わりの円

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $xyz$空間において、点$P_1$(3,-1,1)を中心とした半径$\sqrt 5$の球面$S_1$と、点$P_2$(5,0,-1)を中心とし半径が$\sqrt 2$の球面$S_2$を考える。
(1)線分$P_1P_2$の長さを求めよ。
(2)$S_1$と$S_2$が交わりをもつことを示せ。この交わりは円となる。この円をCとし、その中心を$P_3$とする。Cの半径および中心$P_3$の座標を求めよ。
(3)(2)の円Cに対し、Cを含む平面をHとする。$xy$平面とHの両方に平行で、大きさが1のベクトルを全て求めよ。
(4)点Qが(2)の円C上を動くとき、Qと$xy$平面の距離dの最大値を求めよ。
また、dの最大値を与える点Qの座標を求めよ。
この動画を見る
$\Large{\boxed{4}}$ $xyz$空間において、点$P_1$(3,-1,1)を中心とした半径$\sqrt 5$の球面$S_1$と、点$P_2$(5,0,-1)を中心とし半径が$\sqrt 2$の球面$S_2$を考える。
(1)線分$P_1P_2$の長さを求めよ。
(2)$S_1$と$S_2$が交わりをもつことを示せ。この交わりは円となる。この円をCとし、その中心を$P_3$とする。Cの半径および中心$P_3$の座標を求めよ。
(3)(2)の円Cに対し、Cを含む平面をHとする。$xy$平面とHの両方に平行で、大きさが1のベクトルを全て求めよ。
(4)点Qが(2)の円C上を動くとき、Qと$xy$平面の距離dの最大値を求めよ。
また、dの最大値を与える点Qの座標を求めよ。
福田の数学〜北海道大学2024年理系第4問〜三角形の内心の位置ベクトル

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 三角形OABが、|$\overrightarrow{OA}$|=3, |$\overrightarrow{AB}$|=5, $\overrightarrow{OA}・\overrightarrow{OB}$=10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)$\overrightarrow{OI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)$\overrightarrow{HI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
この動画を見る
$\Large{\boxed{4}}$ 三角形OABが、|$\overrightarrow{OA}$|=3, |$\overrightarrow{AB}$|=5, $\overrightarrow{OA}・\overrightarrow{OB}$=10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)$\overrightarrow{OI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)$\overrightarrow{HI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
福田の数学〜北海道大学2024年理系第1問〜点の一致条件と軌跡

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $t$を実数とし、$xy$平面上の点P($\cos 2t$, $\cos t$)および点Q($\sin t$, $\sin 2t$)を考える。
(1)点Pと点Qが一致するような$t$の値をすべて求めよ。
(2)$t$が0<$t$<$2\pi$ の範囲で変化するとき、点Pの軌跡を$xy$平面上に図示せよ。
ただし、$x$軸、$y$軸との共有点がある場合は、それらの座標を求め、図中に記せ。
この動画を見る
$\Large\boxed{1}$ $t$を実数とし、$xy$平面上の点P($\cos 2t$, $\cos t$)および点Q($\sin t$, $\sin 2t$)を考える。
(1)点Pと点Qが一致するような$t$の値をすべて求めよ。
(2)$t$が0<$t$<$2\pi$ の範囲で変化するとき、点Pの軌跡を$xy$平面上に図示せよ。
ただし、$x$軸、$y$軸との共有点がある場合は、それらの座標を求め、図中に記せ。
福田の数学〜慶應義塾大学2024年看護医療学部第2問(1)〜正六角形の位置ベクトル

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)一辺の長さが2の正六角形ABCDEFにおいて、辺CDの中点をMとし、直線BEと直線AMの交点をPとする。このとき、$\overrightarrow{BC}$, $\overrightarrow{AM}$, $\overrightarrow{BP}$をそれぞれ$\overrightarrow{AB}$, $\overrightarrow{AF}$を用いて表すと$\overrightarrow{BC}$=$\boxed{\ \ ク\ \ }$, $\overrightarrow{AM}$=$\boxed{\ \ ケ\ \ }$, $\overrightarrow{BP}$=$\boxed{\ \ コ\ \ }$である。また、$\overrightarrow{AM}$と$\overrightarrow{BP}$の内積$\overrightarrow{AM}・\overrightarrow{BP}$の値は$\boxed{\ \ サ\ \ }$である。
この動画を見る
$\Large\boxed{2}$ (1)一辺の長さが2の正六角形ABCDEFにおいて、辺CDの中点をMとし、直線BEと直線AMの交点をPとする。このとき、$\overrightarrow{BC}$, $\overrightarrow{AM}$, $\overrightarrow{BP}$をそれぞれ$\overrightarrow{AB}$, $\overrightarrow{AF}$を用いて表すと$\overrightarrow{BC}$=$\boxed{\ \ ク\ \ }$, $\overrightarrow{AM}$=$\boxed{\ \ ケ\ \ }$, $\overrightarrow{BP}$=$\boxed{\ \ コ\ \ }$である。また、$\overrightarrow{AM}$と$\overrightarrow{BP}$の内積$\overrightarrow{AM}・\overrightarrow{BP}$の値は$\boxed{\ \ サ\ \ }$である。
福田の数学〜東京工業大学2024年理系第5問〜2次方程式の解が1のn乗根である条件

単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
この動画を見る
$\Large\boxed{5}$ 整数の組($a$,$b$)に対して2次式$f(x)$=$x^2$+$ax$+$b$ を考える。方程式$f(x)$=0 の複素数の範囲のすべての解$\alpha$に対して$\alpha^n$=1 となる正の整数$n$が存在するような組($a$,$b$)をすべて求めよ。
札幌医科大 2024 複素数の方程式

単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
x>0,y≠0
z=x+yi
$z^3=\overline{z}^2$のときxを求めよ
2024札幌医科大過去問
この動画を見る
x>0,y≠0
z=x+yi
$z^3=\overline{z}^2$のときxを求めよ
2024札幌医科大過去問
【数ⅢC】複素数平面の基本⑦内分点、外分点、重心を考える

単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
$A(-3+2i),B(4-8i)$のとき線分ABの中点、3:1に内分、外分する点を表す複素数を求めよ
$\alpha=0,\beta=2+3i,γ=1+6i$の3点で表される三角形の重心を表す複素数を求めよ
この動画を見る
$A(-3+2i),B(4-8i)$のとき線分ABの中点、3:1に内分、外分する点を表す複素数を求めよ
$\alpha=0,\beta=2+3i,γ=1+6i$の3点で表される三角形の重心を表す複素数を求めよ
これ知ってる?

福田の数学〜東京大学2018年理系第5問〜複素数平面上の点の軌跡

単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
$\omega=\displaystyle \frac{1}{1-u}$とおき$\omega$と共役な複素数を$\overline{ \omega }$で表す。
(1)uと$\displaystyle \frac{\overline{ \omega }}{\omega}$をzについての整数として表し、絶対値の値$\displaystyle \frac{\vert \omega+\overline{ \omega }-1 \vert}{\vert \omega \vert}$を求めよ。
(2)Cのうち実部が$\frac{1}{2}$以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R($\omega$)の軌跡を求めよ。
$\omega=x+yi$(x,yは実数)とおく。
2018東大理系過去問
この動画を見る
複素数平面上の原点を中心とする半径 1 の円を C とする。
点 P(z) は C 上にあり、点 A(I) とは異なるとする。
点 P における円 C の接線に関して、点 A と対称な点を Q(u) とする。
$\omega=\displaystyle \frac{1}{1-u}$とおき$\omega$と共役な複素数を$\overline{ \omega }$で表す。
(1)uと$\displaystyle \frac{\overline{ \omega }}{\omega}$をzについての整数として表し、絶対値の値$\displaystyle \frac{\vert \omega+\overline{ \omega }-1 \vert}{\vert \omega \vert}$を求めよ。
(2)Cのうち実部が$\frac{1}{2}$以下の複素数平面で表される部分をCとする。点P(z)がC’上を動くときの点R($\omega$)の軌跡を求めよ。
$\omega=x+yi$(x,yは実数)とおく。
2018東大理系過去問
放物線と直線 2024早大本庄 オンラインで教えている生徒が早稲田本庄に合格しました!

単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
数学を数楽に
問題文全文(内容文):
点(1,9)を通り、y軸と平行でなく放物線$y=x^2$とのすべての交点のx座標とy座標がともに整数となる直線は何本あるか?
2024早稲田大学 本庄高等学院
この動画を見る
点(1,9)を通り、y軸と平行でなく放物線$y=x^2$とのすべての交点のx座標とy座標がともに整数となる直線は何本あるか?
2024早稲田大学 本庄高等学院
福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限

単元:
#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#関数と極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
放物線$y=x^2$のうち$-1 \leqq x \leqq 1$を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき$\overrightarrow{ OR }=\displaystyle \frac{1}{k}\overrightarrow{ OP }+k\overrightarrow{ OQ }$を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle \lim_{ k \to +0 } S(k) ,\displaystyle \lim_{ k \to \infty }S(k)$を求めよ。
2018東京大学理系過去問
この動画を見る
放物線$y=x^2$のうち$-1 \leqq x \leqq 1$を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき$\overrightarrow{ OR }=\displaystyle \frac{1}{k}\overrightarrow{ OP }+k\overrightarrow{ OQ }$を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle \lim_{ k \to +0 } S(k) ,\displaystyle \lim_{ k \to \infty }S(k)$を求めよ。
2018東京大学理系過去問
高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この公式の意味分かる?

2024年共通テスト徹底解説〜数学ⅡB第5問ベクトル〜福田の入試問題解説

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第5問ベクトルを徹底解説します
この動画を見る
共通テスト2024の数学ⅡB第5問ベクトルを徹底解説します
輪ゴムは切ってないよ!取っ手も壊してない!トポロジー(位相幾何学)

福田の数学〜2点が動くときはどちらか一方を固定する〜東京大学2018年文系第4問〜平面ベクトルと点の動ける領域

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
4 放物線$y=x^2$ のうち$-1 \leqq x \leqq 1$をみたす部分を C とする。座標平面上の原点Oと点A(1,0)を考える。
( 1 )点 P が C 上を動くとき、$\overrightarrow{OQ}=2\overrightarrow{ OP}$ をみたす点 Q の軌跡を求めよ。
( 2 )点 P が C 上を動き、点 R が線分 OA 上を動くとき$\overrightarrow{ OS }=\overrightarrow{ 2OP }+\overrightarrow{ OR }$をみたす点 S が動く領域を座標平面上に図示し、その面積を求めよ。
2018東京大学文過去問
この動画を見る
4 放物線$y=x^2$ のうち$-1 \leqq x \leqq 1$をみたす部分を C とする。座標平面上の原点Oと点A(1,0)を考える。
( 1 )点 P が C 上を動くとき、$\overrightarrow{OQ}=2\overrightarrow{ OP}$ をみたす点 Q の軌跡を求めよ。
( 2 )点 P が C 上を動き、点 R が線分 OA 上を動くとき$\overrightarrow{ OS }=\overrightarrow{ 2OP }+\overrightarrow{ OR }$をみたす点 S が動く領域を座標平面上に図示し、その面積を求めよ。
2018東京大学文過去問
福田の数学〜3次方程式の解の存在範囲に関する問題〜東京大学2018年文系第3問〜関数の増減と方程式の解

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
a>0とし、f(x)=$x^3-3a^2x$とおく。
( 1 )x$ \geqq 1$でf(x)が単調に増加するための aについての条件を求めよ。
( 2 )次の 2 条件を満たす点(a,b)の動きうる範囲を求め、座標平面上に図示せよ。
条件 1 :方程式f(x)=bは相異なる 3 実数解をもつ。
条件 2 :さらに方程式f(x)=bの解を$\alpha<\beta<\gamma$とすると、$\beta >1$ である。
2018東京大学文過去問
この動画を見る
a>0とし、f(x)=$x^3-3a^2x$とおく。
( 1 )x$ \geqq 1$でf(x)が単調に増加するための aについての条件を求めよ。
( 2 )次の 2 条件を満たす点(a,b)の動きうる範囲を求め、座標平面上に図示せよ。
条件 1 :方程式f(x)=bは相異なる 3 実数解をもつ。
条件 2 :さらに方程式f(x)=bの解を$\alpha<\beta<\gamma$とすると、$\beta >1$ である。
2018東京大学文過去問
共通テストでめちゃ使えるベクトルの裏技(s, t問題)(公式)

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
この動画を見る
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
杏林大学2023医学部第2問訂正動画

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師:
福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。
2023杏林大学過去問
この動画を見る
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。
2023杏林大学過去問
福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師:
福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。
2023杏林大学過去問
この動画を見る
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。
2023杏林大学過去問
福田の数学〜空間における三角形の外心はどうやって求める〜杏林大学2023年医学部第2問前編〜空間ベクトルと三角形の外心

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師:
福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、
$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
2023杏林大学過去問
この動画を見る
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、
$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
2023杏林大学過去問
【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮裏技集 紹介動画です(指数・対数、微分積分、数列、ベクトル)
この動画を見る
【共テ数学IIB】解答時間短縮裏技集 紹介動画です(指数・対数、微分積分、数列、ベクトル)
【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
福田の数学〜回転の概念を使って考えるよ〜北里大学2023年医学部第3問〜ベクトルの漸化式と点列

単元:
#大学入試過去問(数学)#平面上のベクトル#数列#ベクトルと平面図形、ベクトル方程式#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
座標平面上に 3 点 $A_{0} ( 0 , 0 ), B_{0} ( 2 , 0 ), C_{0}( 1 ,\sqrt{ 3 })$があり、線分$A_{0}B_{0},B_{0}C_{0},C_{0}A_{0}$をそれぞれ 2 : 1 に内分する点 $A_{1} ,B_{1} ,C_{1}$をとる。以下同様にして、正の整数nに対し、線分$A_{n}B_{n},B_{n}C_{n},C_{n}A_{n}$をそれぞれ 2 : 1 に内分する点$A_{n+1},B_{n+1},C_{n+1}$をとる。また、$\overrightarrow{ P_{n} }=\overrightarrow{ B_{n-1}B_{n} }(n=1,2,3,・・・)$とおく。
(1)$\overrightarrow{ p_{1} },\overrightarrow{ p_{2} }$をそれぞれ成分表示せよ。
(2)$\overrightarrow{ p_{n+2} }を\overrightarrow{ p_{n} }$を用いて表せ。
(3)$\displaystyle \sum_{k=1}^n \overrightarrow{ p_{2k-1}}$を$\overrightarrow{ p-1}$を用いて表せ。
(4)点B_{2n}の座標を求めよ。
2023北里大学医過去問
この動画を見る
座標平面上に 3 点 $A_{0} ( 0 , 0 ), B_{0} ( 2 , 0 ), C_{0}( 1 ,\sqrt{ 3 })$があり、線分$A_{0}B_{0},B_{0}C_{0},C_{0}A_{0}$をそれぞれ 2 : 1 に内分する点 $A_{1} ,B_{1} ,C_{1}$をとる。以下同様にして、正の整数nに対し、線分$A_{n}B_{n},B_{n}C_{n},C_{n}A_{n}$をそれぞれ 2 : 1 に内分する点$A_{n+1},B_{n+1},C_{n+1}$をとる。また、$\overrightarrow{ P_{n} }=\overrightarrow{ B_{n-1}B_{n} }(n=1,2,3,・・・)$とおく。
(1)$\overrightarrow{ p_{1} },\overrightarrow{ p_{2} }$をそれぞれ成分表示せよ。
(2)$\overrightarrow{ p_{n+2} }を\overrightarrow{ p_{n} }$を用いて表せ。
(3)$\displaystyle \sum_{k=1}^n \overrightarrow{ p_{2k-1}}$を$\overrightarrow{ p-1}$を用いて表せ。
(4)点B_{2n}の座標を求めよ。
2023北里大学医過去問
福田の数学〜格子点の個数を数えるコツ〜北里大学2023年医学部第1問(1)〜複素数平面上の円の内部にある格子点

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
( 1 ) 8 の 6 乗根のうち、実部が正で虚部が負である複素数をzとする。このとき、$\fbox{ア}$であり、$z+z^5=\fbox{イ}$。複素数平面において、点zを中心とする円Cが実軸と2点a,bで交わり、$|a-b|=\sqrt{30}$を満たしている。このとき、円Cの半径 r は$r=\fbox{ウ}$である。また、円Cの内部にある複素数のうち、実部、虚部ともに 0 以上の整数であるものの個数は$\fbox{エ}$である。
2023北里大学医過去問
この動画を見る
( 1 ) 8 の 6 乗根のうち、実部が正で虚部が負である複素数をzとする。このとき、$\fbox{ア}$であり、$z+z^5=\fbox{イ}$。複素数平面において、点zを中心とする円Cが実軸と2点a,bで交わり、$|a-b|=\sqrt{30}$を満たしている。このとき、円Cの半径 r は$r=\fbox{ウ}$である。また、円Cの内部にある複素数のうち、実部、虚部ともに 0 以上の整数であるものの個数は$\fbox{エ}$である。
2023北里大学医過去問
高校数学:数学検定準1級1次:問題3,4 :ベクトルの内積、複素数平面絶対値と角度

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#複素数平面#平面上のベクトルと内積#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題3 3つの単位ベクトル$\vec{ a },\vec{ b },\vec{ c }$が2$\vec{ a }+3\vec{ b }+4\vec{ c }=\vec{ 0 }$を満たすとき、$\vec{ a }$と$\vec{ c }$の内積$\vec{ a }・\vec{ c }$を求めなさい。
ただし、$\vec{ 0 }$は零ベクトルを表します。
問題4 複素数 $z=-2-i$について、次の問いに答えなさい。ただし、iは虚数単位を表します。
① zの絶対値を求めなさい。
② zの偏角を$\theta$とします。このとき、$sin4\theta$の値を求めなさい。
この動画を見る
問題3 3つの単位ベクトル$\vec{ a },\vec{ b },\vec{ c }$が2$\vec{ a }+3\vec{ b }+4\vec{ c }=\vec{ 0 }$を満たすとき、$\vec{ a }$と$\vec{ c }$の内積$\vec{ a }・\vec{ c }$を求めなさい。
ただし、$\vec{ 0 }$は零ベクトルを表します。
問題4 複素数 $z=-2-i$について、次の問いに答えなさい。ただし、iは虚数単位を表します。
① zの絶対値を求めなさい。
② zの偏角を$\theta$とします。このとき、$sin4\theta$の値を求めなさい。
【わかりやすく】内分点の位置ベクトルの頻出問題(数学B・位置ベクトル)

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
三角形$ABC$において、辺$AB$の中点を$D$、辺$AC$を$3:2$に内分する点を$E$とし、線分$CD,BE$の交点を$P$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AP }$を$\vec{ b },\vec{ c }$を用いて表せ。
この動画を見る
三角形$ABC$において、辺$AB$の中点を$D$、辺$AC$を$3:2$に内分する点を$E$とし、線分$CD,BE$の交点を$P$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AP }$を$\vec{ b },\vec{ c }$を用いて表せ。
福田の数学〜サッカーボール上のベクトルを求めよう〜慶應義塾大学2023年総合政策学部第5問〜空間の位置ベクトルと三角形の面積

単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{5}}$サッカーボールは12個の正五角形と20個の正六角形からなり、切頂二十面体と呼ばれる構造をしている。以下では、正五角形と正六角形の各辺の長さを1であるとし、右図のように頂点にアルファベットで名前を付ける。なお、正五角形の辺と対角線の長さの比は
$1:\frac{1+\sqrt5}{2}$である。
(1)$\overrightarrow{ OA_1 }$と$\overrightarrow{ OA_2 }$の内積は,
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\dfrac{\boxed{ア}+\boxed{イ}\sqrt{\boxed{ウ}}}{\boxed{エ}}$である.
2023慶應義塾大学総合政策学部過去問
この動画を見る
${\large\boxed{5}}$サッカーボールは12個の正五角形と20個の正六角形からなり、切頂二十面体と呼ばれる構造をしている。以下では、正五角形と正六角形の各辺の長さを1であるとし、右図のように頂点にアルファベットで名前を付ける。なお、正五角形の辺と対角線の長さの比は
$1:\frac{1+\sqrt5}{2}$である。
(1)$\overrightarrow{ OA_1 }$と$\overrightarrow{ OA_2 }$の内積は,
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\dfrac{\boxed{ア}+\boxed{イ}\sqrt{\boxed{ウ}}}{\boxed{エ}}$である.
2023慶應義塾大学総合政策学部過去問
福田の数学〜立方体の平面による切断を考えよう〜慶應義塾大学2023年経済学部第5問〜立方体の平面による切断と体積の最大

単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。
2023慶應義塾大学商学部過去問
この動画を見る
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。
2023慶應義塾大学商学部過去問
【FULL】定期テスト直前対策!ベクトル解説動画フルパック流し【数B(新課程 数C)】

単元:
#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトルのまとめ動画です。
ベクトルの基本から球面・平面の方程式まで
見たい内容のシーンをチャプターから選んで下さい!!
この動画を見る
ベクトルのまとめ動画です。
ベクトルの基本から球面・平面の方程式まで
見たい内容のシーンをチャプターから選んで下さい!!