数学(高校生)
東京医科歯科大 整式の大小比較
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は異なる整数
大小比較せよ
(1)
$a^3+b^3,a^2b+ab^2$
(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$
出典:2010年東京医科歯科大学 過去問
この動画を見る
$a,b,c$は異なる整数
大小比較せよ
(1)
$a^3+b^3,a^2b+ab^2$
(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$
出典:2010年東京医科歯科大学 過去問
弘前大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ
出典:2010年弘前大学 過去問
この動画を見る
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ
出典:2010年弘前大学 過去問
数学オリンピック予選 整数問題
単元:
#数学検定・数学甲子園・数学オリンピック等#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$11^{12^{13}}$の十の位
$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない
出典:2007年数学オリンピック 予選問題
この動画を見る
$11^{12^{13}}$の十の位
$11$の$12^{13}$乗であり
$11^{12}$の$13$乗ではない
出典:2007年数学オリンピック 予選問題
センター試験(追試)数列
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C_1=2$
$C_{n+1}=-C_n+n^2+3$
(1)
$C_{25}-C_{23}$の値を求めよ。
(2)
$C_{25}$の値を求めよ。
出典:2004年センター試験 追試問題
この動画を見る
$C_1=2$
$C_{n+1}=-C_n+n^2+3$
(1)
$C_{25}-C_{23}$の値を求めよ。
(2)
$C_{25}$の値を求めよ。
出典:2004年センター試験 追試問題
名古屋市立大 積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。
出典:2001年名古屋市立大学 過去問
この動画を見る
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。
出典:2001年名古屋市立大学 過去問
漸化式 数列
単元:
#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
この動画を見る
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
南山大 指数方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4^x+a・2^{x+1}+b=0$が異なる2つ負の解をもつための$a,b$の満たすべき条件を図示せよ
出典:南山大学 過去問
この動画を見る
$4^x+a・2^{x+1}+b=0$が異なる2つ負の解をもつための$a,b$の満たすべき条件を図示せよ
出典:南山大学 過去問
熊本大 関数の領域
単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$
$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。
出典:2001年熊本大学 過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$
$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。
出典:2001年熊本大学 過去問
東京水産大 三次関数の共通接線
単元:
#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3$と$y=(x+1)^3+k$の両方に接する直線が5本引けるような$k$の範囲を求めよ
出典:1994年東京海洋大学 過去問
この動画を見る
$y=x^3$と$y=(x+1)^3+k$の両方に接する直線が5本引けるような$k$の範囲を求めよ
出典:1994年東京海洋大学 過去問
数学オリンピック予選
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。
出典:2001年数学オリンピック 予選問題
この動画を見る
$1^{2001}+2^{2001}+3^{2001}+…+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ。
出典:2001年数学オリンピック 予選問題
数列・合同式 前橋工科大
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1$ $a_n=3a_{n-1}+3^n$
(1)
$a_n$
(2)
$\displaystyle \sum_{k=1}^n a_k$
(3)
$a_n+n-2$は4つの倍数を示せ
出典:2000年前橋工科大学 過去問
この動画を見る
$a_1=1$ $a_n=3a_{n-1}+3^n$
(1)
$a_n$
(2)
$\displaystyle \sum_{k=1}^n a_k$
(3)
$a_n+n-2$は4つの倍数を示せ
出典:2000年前橋工科大学 過去問
【数学】フォーカスゴールドとチャート式、どう違う?どっち使う?~全国模試1位の勉強法【篠原好】
単元:
#その他#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「数学のフォーカスゴールドとチャート式、どっちを使うべきか?」についてお話しています。
この動画を見る
「数学のフォーカスゴールドとチャート式、どっちを使うべきか?」についてお話しています。
慶應義塾大(商)数列の和
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k・2^{k+2}$
出典:2000年慶應義塾大学商学部 過去問
この動画を見る
$\displaystyle \sum_{k=1}^n k・2^{k+2}$
出典:2000年慶應義塾大学商学部 過去問
確率漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
この動画を見る
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
【数学】『一対一』の効果的な使い方~全国模試1位の勉強法【篠原好】
2020年問題 合同式の基本
【数学A】「図形の性質」が嫌でもスルスル入ってくる動画【方べきの定理・接弦定理・チェバの定理・メネラウスの定理・角の二等分線】
単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
問題文全文(内容文):
【数学A】図形の性質(方べきの定理・接弦定理・チェバの定理・メネラウスの定理・角の二等分線)解説動画です
この動画を見る
【数学A】図形の性質(方べきの定理・接弦定理・チェバの定理・メネラウスの定理・角の二等分線)解説動画です
岡山大 複素数
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$
出典:岡山大学 過去問
この動画を見る
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$
出典:岡山大学 過去問
【数A】n進法について7分でマスターしよう
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数A】n進法について解説動画です
-----------------
6132を8進法で表せ。
この動画を見る
【数A】n進法について解説動画です
-----------------
6132を8進法で表せ。
京都産業大 複雑な数列の和
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k,N$自然数
$a_k=[\sqrt{ k }]$ガウス記号
$\displaystyle \sum_{k=1}^{N^2} a_k$を$N$で表せ
出典:2000年京都産業大学 過去問
この動画を見る
$k,N$自然数
$a_k=[\sqrt{ k }]$ガウス記号
$\displaystyle \sum_{k=1}^{N^2} a_k$を$N$で表せ
出典:2000年京都産業大学 過去問
一橋大 解説ヨビノリたくみさん 円と放物線の接線
単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
原点を中心とする半径$r$の円と、放物線$y=\displaystyle \frac{1}{2}g^2+1$との両方に接する直線のうち、互いに直交するものがある。
$r$の値を求めよ。
出典:1997年一橋大学 過去問
この動画を見る
原点を中心とする半径$r$の円と、放物線$y=\displaystyle \frac{1}{2}g^2+1$との両方に接する直線のうち、互いに直交するものがある。
$r$の値を求めよ。
出典:1997年一橋大学 過去問
東京理科大 多項定理
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(1+x+x^2)^n$の$x^2$の係数を$a_n$
$a_n$を$n$で表せ
出典:2000年東京理科大学 過去問
この動画を見る
$(1+x+x^2)^n$の$x^2$の係数を$a_n$
$a_n$を$n$で表せ
出典:2000年東京理科大学 過去問
福田の入試問題解説〜アプリの紹介です。
千葉大 漸化式 良問再投稿
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$
以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2
出典:2013年千葉大学 過去問
この動画を見る
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$
以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2
出典:2013年千葉大学 過去問
東大医学部 宇佐見すばるさん登場
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数$a,b$は3の倍数でない。
$f(x)=2x^3+a^2x^2+2b^2x+1$
(1)
$f(1)$と$f(2)$を3で割った余りをそれぞれ求めよ。
(2)
$f(x)=0$を満たす整数$x$は存在しないことを示せ
(3)
$f(x)=0$を満たす有理数$x$が存在するような組$(a,b)$を求めよ
出典:2018年九州大学 過去問
この動画を見る
整数$a,b$は3の倍数でない。
$f(x)=2x^3+a^2x^2+2b^2x+1$
(1)
$f(1)$と$f(2)$を3で割った余りをそれぞれ求めよ。
(2)
$f(x)=0$を満たす整数$x$は存在しないことを示せ
(3)
$f(x)=0$を満たす有理数$x$が存在するような組$(a,b)$を求めよ
出典:2018年九州大学 過去問
もっちゃんと学ぶ「合同式」
九州大 三次関数 積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ
出典:2018年九州大学 過去問
この動画を見る
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ
出典:2018年九州大学 過去問
2020年問題 数2Bまでの知識で解けます
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(45+\sqrt{ 2020 })^{2020}$の整数部分の下2ケタを求めよ
この動画を見る
$(45+\sqrt{ 2020 })^{2020}$の整数部分の下2ケタを求めよ
完全順列(モンモールの問題)【高校数学】
一橋大 三次関数と接線
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2$
$g(x)=x^3+3x^2+c(c \geqq 0)$
$f(x)$上の点$P(p,f(p))$における接線$l$が$g(x)$と点$Q(q,g(q))$で接し、点$R$で$f(x)$と交わる。
(1)
$c$を$p$で表せ
(2)
$PQ:QR$
出典:2000年一橋大学 過去問
この動画を見る
$f(x)=x^3+3x^2$
$g(x)=x^3+3x^2+c(c \geqq 0)$
$f(x)$上の点$P(p,f(p))$における接線$l$が$g(x)$と点$Q(q,g(q))$で接し、点$R$で$f(x)$と交わる。
(1)
$c$を$p$で表せ
(2)
$PQ:QR$
出典:2000年一橋大学 過去問