数学(高校生)
【数Ⅲ】極限:岐阜大の類題! 複素数z[n]をz[1]=1,z[n+1]=i/2(z[n]+1)(n=1,2,3,···)により定める。z[n]の実部x[n],虚部y[n]を求めよ。
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
複素数$z_1$を$z_1=1$,$z_{n+1}=\dfrac{1}{2}(z_n+1)(n=1,2,3,···)$により定める。$z_n$の実部$x_n$,虚部$y_n$を求めよ。
この動画を見る
複素数$z_1$を$z_1=1$,$z_{n+1}=\dfrac{1}{2}(z_n+1)(n=1,2,3,···)$により定める。$z_n$の実部$x_n$,虚部$y_n$を求めよ。
宮崎大 数学的帰納法 合同式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.
(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.
宮崎大過去問
この動画を見る
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.
(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.
宮崎大過去問
東工大 三項間漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$x^2-3x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-3^n$は5の倍数であることを示せ.
2013東工大過去問
この動画を見る
$n$は自然数である.
$x^2-3x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-3^n$は5の倍数であることを示せ.
2013東工大過去問
【高校数学】重複を許して取る組合せの例題~必死に解くで~ 1-12.5【数学A】
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
袋の中に赤玉,青玉,白玉,黒玉がたくさん入ってる。
この袋から7個の玉を取り出すとき、玉の取り出し方は何通りあるか。
2⃣
1個のさいころを3回投げ、出た目を順に$a,b,c$とする。
次の場合は何通りあるか。
(i) $a \lt b \lt c$
(ii) $a \leqq b \leqq c$
3⃣
次の場合を満たす$x,y,z$は何通りか
(i) $x + y + z = 9, x,y,z$は負でない整数
(ii) $x + y + z = 15, x,y,z$は正の整数
この動画を見る
1⃣
袋の中に赤玉,青玉,白玉,黒玉がたくさん入ってる。
この袋から7個の玉を取り出すとき、玉の取り出し方は何通りあるか。
2⃣
1個のさいころを3回投げ、出た目を順に$a,b,c$とする。
次の場合は何通りあるか。
(i) $a \lt b \lt c$
(ii) $a \leqq b \leqq c$
3⃣
次の場合を満たす$x,y,z$は何通りか
(i) $x + y + z = 9, x,y,z$は負でない整数
(ii) $x + y + z = 15, x,y,z$は正の整数
【数Ⅰ】図形と計量: 0°≦x≦180°のとき、関数y=sin²x+cosx+1の最大値、最小値を求めましょう。
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#高校リード問題集#高校リード問題集数Ⅰ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$0°≦x≦180°$のとき、関数$y=sin²x+cosx+1$の最大値、最小値を求めよ。
この動画を見る
$0°≦x≦180°$のとき、関数$y=sin²x+cosx+1$の最大値、最小値を求めよ。
東工大 末尾の0の個数問題
単元:
#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$f(n)$を$n!$の末尾に並ぶ$0$の個数とする.
(例)$f(10)=2,f(100)=24$
$\displaystyle \lim_{n\to\infty}\dfrac{f(10^n)}{10^n}$を求めよ.
1991東工大過去問
この動画を見る
$n$は自然数である.
$f(n)$を$n!$の末尾に並ぶ$0$の個数とする.
(例)$f(10)=2,f(100)=24$
$\displaystyle \lim_{n\to\infty}\dfrac{f(10^n)}{10^n}$を求めよ.
1991東工大過去問
【高校数学】重複を許して取る組合せ~公式を意識しないで解く~ 1-12【数学A】
レピュニット数の剰余
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\underbrace{11111・・・・・・・11}_{100個}$を81で割った余りを求めよ.
この動画を見る
$\underbrace{11111・・・・・・・11}_{100個}$を81で割った余りを求めよ.
琉球大 剰余 二項定理
単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.
1987琉球大過去
この動画を見る
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.
1987琉球大過去
【数学】誰もやらない数学の参考書の使い方~フォーカスゴールド・チャート等の使い方~
高次方程式の有理数解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
この動画を見る
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
【数学】『赤チャート』ってどうなん?~活用法や、おすすめ度合い【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学の『赤チャート』ってどうなん?
「活用法や、おすすめ度合い」についてお話しています。
この動画を見る
数学の『赤チャート』ってどうなん?
「活用法や、おすすめ度合い」についてお話しています。
【高校数学】同じものを含む順列の例題~最短経路の問題~ 1-11.5【数学A】
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
右の図のような街路で、PからQまで行く最短経路のうち、
次の各場合は何通りあるか。
(1)総数
(2)Rを通る経路
(3)R, Sをともに通る経路
(4)RまたはSを通る経路
(5)R, Sをともに通らない経路
(6)☆印の箇所を通らない経路
この動画を見る
右の図のような街路で、PからQまで行く最短経路のうち、
次の各場合は何通りあるか。
(1)総数
(2)Rを通る経路
(3)R, Sをともに通る経路
(4)RまたはSを通る経路
(5)R, Sをともに通らない経路
(6)☆印の箇所を通らない経路
佐賀大 漸化式
【高校数学】同じものを含む順列の例題~できた方がいい問題3題~1-11.5【数学A】
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
8人の生徒を次のようにする方法は何通りあるか。
(a)4人,3人,1人の3組分ける
(b)4人,4人の2つの組A, Bに分ける
(c)4人,4人の2組に分ける
(d)4人,2人,2人の3組に分ける
(e)2人,2人,2人,2人の4組に分ける
-----------------
2⃣
次の数は何通りか。
(a)6個の数1,1,1,2,2,3を並べてできる6桁の整数
(b)7個の数0,1,1,1,2,2,3を並べてできる7桁の整数
-----------------
3⃣
YOKOHAMAの8文字を1列に並べる
(a)異なる並べ方は何通りあるか
(b)OとAが偶数番目にある並べ方は何通りあるか
(c)Y,K,H,Mがこの順にある並べ方は何通りあるか
この動画を見る
1⃣
8人の生徒を次のようにする方法は何通りあるか。
(a)4人,3人,1人の3組分ける
(b)4人,4人の2つの組A, Bに分ける
(c)4人,4人の2組に分ける
(d)4人,2人,2人の3組に分ける
(e)2人,2人,2人,2人の4組に分ける
-----------------
2⃣
次の数は何通りか。
(a)6個の数1,1,1,2,2,3を並べてできる6桁の整数
(b)7個の数0,1,1,1,2,2,3を並べてできる7桁の整数
-----------------
3⃣
YOKOHAMAの8文字を1列に並べる
(a)異なる並べ方は何通りあるか
(b)OとAが偶数番目にある並べ方は何通りあるか
(c)Y,K,H,Mがこの順にある並べ方は何通りあるか
N進法の3次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
何進法か?
$x^3-12x^2+59x-93=0$が3つの整数解をもち,それらが等差数列となっている.
この動画を見る
何進法か?
$x^3-12x^2+59x-93=0$が3つの整数解をもち,それらが等差数列となっている.
【数B】数列:数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。95東工大,07筑波大,青山学院などで出題された問題です!
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。
この動画を見る
数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。
【数B】数列:初項196、公差-8の等差数列において、初項から第何項までの和が最大となるか。
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
初項196、公差-8の等差数列において、初項から第何項までの和が最大となるか。
この動画を見る
初項196、公差-8の等差数列において、初項から第何項までの和が最大となるか。
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^3+n^2+n+1$が$60$の倍数となる最小の自然数$n$を求めよ.
この動画を見る
$n^3+n^2+n+1$が$60$の倍数となる最小の自然数$n$を求めよ.
【高校数学】同じものを含む順列~考え方は簡単~1-11 【数学A】
N進法 類題 京都大
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
何進法ですか.
$2^{10}=144$
$2^{12}=1104$
京都大過去問
この動画を見る
何進法ですか.
$2^{10}=144$
$2^{12}=1104$
京都大過去問
【高校数学】組合せの例題~すこし難しいのも解こうぜ~ 1-10.5【数学A】
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
正十角形ABCDEFGHIJの3つの頂点を結んで三角形をつくる。
(ア)できる三角形の総数を求めよ。
(イ)正十角形と1辺だけを共有する三角形は何個あるか。
(ウ)正十角形と辺を共有しない三角形は何個あるか。
2⃣
男子8人,女子6人の中から4人の委員を選ぶとき、次のような選び方は何通りあるか。
(1)すべての選び方
(2)男子2人,女子2人を選ぶ
(3)女子から少なくとも1人選ぶ
(4)男子、女子から少なくとも1人ずつ選ぶ
(5)特定の2人、A・Bがともに選ばれる
(6)Aは選ばれ、Bは選ばれない
この動画を見る
1⃣
正十角形ABCDEFGHIJの3つの頂点を結んで三角形をつくる。
(ア)できる三角形の総数を求めよ。
(イ)正十角形と1辺だけを共有する三角形は何個あるか。
(ウ)正十角形と辺を共有しない三角形は何個あるか。
2⃣
男子8人,女子6人の中から4人の委員を選ぶとき、次のような選び方は何通りあるか。
(1)すべての選び方
(2)男子2人,女子2人を選ぶ
(3)女子から少なくとも1人選ぶ
(4)男子、女子から少なくとも1人ずつ選ぶ
(5)特定の2人、A・Bがともに選ばれる
(6)Aは選ばれ、Bは選ばれない
群馬大(医) ピタゴラス数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数である.
$a^2+b^2=c^2$,$b$が2の累乗が$c$と$b$の差が1である$(a,b,c)$をすべて求めよ.
2018群馬大(医)過去問
この動画を見る
$a,b,c$は自然数である.
$a^2+b^2=c^2$,$b$が2の累乗が$c$と$b$の差が1である$(a,b,c)$をすべて求めよ.
2018群馬大(医)過去問
三項間漸化式 兵庫県立大
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.
兵庫県立大過去問
この動画を見る
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.
兵庫県立大過去問
スタンフォード大の院試問題?
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$進法で$x^2-11x+34=0$が整数解をもつ$n$を求めよ.
スタンフォード大過去問
この動画を見る
$n$進法で$x^2-11x+34=0$が整数解をもつ$n$を求めよ.
スタンフォード大過去問
東大の過去問を2倍難しくしてみた
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$6$進法で書かれた3桁の数を2乗したら下3桁が元の数と同じであることを示せ.
この動画を見る
$6$進法で書かれた3桁の数を2乗したら下3桁が元の数と同じであることを示せ.
整式の剰余 大分大(医)の復習問題
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^n$を$x^4+1$で割った余りを求めよ.
大分大(医)過去問
この動画を見る
$n$を自然数とする.
$x^n$を$x^4+1$で割った余りを求めよ.
大分大(医)過去問
日本医科大学 三次方程式の解が等比数列
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.
2018日本医科大過去問
この動画を見る
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.
2018日本医科大過去問
【中学数学】中高一貫校用問題集(代数編)平方根:√1 /24,1/5,√1/20,1/6の大小を比較せよ。
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{\dfrac{1}{24}},\dfrac{1}{5},\sqrt{\dfrac{1}{20}},\dfrac{1}{6}$の大小を比較せよ。
この動画を見る
$\sqrt{\dfrac{1}{24}},\dfrac{1}{5},\sqrt{\dfrac{1}{20}},\dfrac{1}{6}$の大小を比較せよ。
【数Ⅱ】微分法と積分法:x軸の周りに1回転してできる回転体の体積の考え方! 次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。y=2x+3,x=0,x=2,x軸
単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。
y=2x+3
x=0
x=2
x軸
この動画を見る
次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。
y=2x+3
x=0
x=2
x軸