数学(高校生)
【高校数学】 数Ⅱー39 解と係数の関係⑥
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$x^2-mx+2m+5=0$が次のような異なる2つの解をもつように、定数mの値の範囲を定めよう。
①2つとも正
②2つとも負
③異符号
この動画を見る
◎2次方程式$x^2-mx+2m+5=0$が次のような異なる2つの解をもつように、定数mの値の範囲を定めよう。
①2つとも正
②2つとも負
③異符号
【高校数学】 数Ⅱ-38 解と係数の関係⑤
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$x^2+3x-2=0$の2つの解がα、βのとき、次の2数を解とする2次方程式を1つ作ろう。ただす、計数は整数とする。
①$α^2、β^2$
②$α+2、β+2$
③$\displaystyle \frac{ β}{α},\displaystyle \frac{α }{β}$
この動画を見る
◎2次方程式$x^2+3x-2=0$の2つの解がα、βのとき、次の2数を解とする2次方程式を1つ作ろう。ただす、計数は整数とする。
①$α^2、β^2$
②$α+2、β+2$
③$\displaystyle \frac{ β}{α},\displaystyle \frac{α }{β}$
【高校数学】 数Ⅱ-37 解と係数の関係④
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2数を解とする2次方程式を1つ作ろう。ただし、係数は整数とする。
①$6.-3$
②$2+3i,2-3i$
◎和と積が次のようになる2数を求めよう。
③和が-5,積が3
④和が2,積が4
この動画を見る
◎次の2数を解とする2次方程式を1つ作ろう。ただし、係数は整数とする。
①$6.-3$
②$2+3i,2-3i$
◎和と積が次のようになる2数を求めよう。
③和が-5,積が3
④和が2,積が4
【高校数学】 数Ⅱ-36 解と係数の関係③
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次式を、複素数の範囲で因数分解をしよう。
①$x^2+8x+5$
②$3x^2-4x-1$
③$2x^2+3x+4$
この動画を見る
◎次の2次式を、複素数の範囲で因数分解をしよう。
①$x^2+8x+5$
②$3x^2-4x-1$
③$2x^2+3x+4$
【高校数学】 数Ⅱ-35 解と係数の関係②
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$x^2+3x+1=0$の2つの解をα、βとするとき、次の式の値を求めよう。
①$α^2β+αβ^2$
②$α^2+β^2$
③$α^3+β^3$
④$\displaystyle \frac{ β}{α}+\displaystyle \frac{α }{β}$
この動画を見る
◎2次方程式$x^2+3x+1=0$の2つの解をα、βとするとき、次の式の値を求めよう。
①$α^2β+αβ^2$
②$α^2+β^2$
③$α^3+β^3$
④$\displaystyle \frac{ β}{α}+\displaystyle \frac{α }{β}$
【高校数学】 数Ⅱ-34 解と係数の関係①
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
2次方程式$ax^2+bx+c=0$の2つの解を$α,β$とすると、
$α+β=$①____,
$αβ=$②___,
$ax^2+bc+c=$③a(____)(____)
◎次の2次方程式の2つの解の和と積を求めよう。
①$x^2+3x-5=0$
②$-5x^2+x-2=0$
③$3x^2-9=0$
④$2x(3-x)=0$
⑤$\displaystyle \frac{4}{3}x^2-2x+\displaystyle \frac{5}{6}=0$
この動画を見る
2次方程式$ax^2+bx+c=0$の2つの解を$α,β$とすると、
$α+β=$①____,
$αβ=$②___,
$ax^2+bc+c=$③a(____)(____)
◎次の2次方程式の2つの解の和と積を求めよう。
①$x^2+3x-5=0$
②$-5x^2+x-2=0$
③$3x^2-9=0$
④$2x(3-x)=0$
⑤$\displaystyle \frac{4}{3}x^2-2x+\displaystyle \frac{5}{6}=0$
【英語】英語の応用問題で点を取る方法!京大生が3つのポイント別に点を取る勉強法を紹介します!【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
英語の応用問題で点を取る方法!
「3つのポイント別に点を取る勉強法」を紹介しています。
この動画を見る
英語の応用問題で点を取る方法!
「3つのポイント別に点を取る勉強法」を紹介しています。
【高校数学】 数Ⅱ-33 2次方程式の解と判別式⑥
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$4x^2+(k-1)x+1=0$が重解をもつとき、定数kの値とその解を求めよう。
②2次方程式$x^2+3kx-1=2kx-5$が虚数解をもつとき、定数kの値の範囲を求めよう。
この動画を見る
①2次方程式$4x^2+(k-1)x+1=0$が重解をもつとき、定数kの値とその解を求めよう。
②2次方程式$x^2+3kx-1=2kx-5$が虚数解をもつとき、定数kの値の範囲を求めよう。
【高校数学】 数Ⅱ-32 2次方程式の解と判別式⑤
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎aのを定数とするとき、方程式$ax^2+6x+a-8=0$の解の種類を判別しよう。
この動画を見る
◎aのを定数とするとき、方程式$ax^2+6x+a-8=0$の解の種類を判別しよう。
【高校数学】 数Ⅱ-31 2次方程式の解と判別式④
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎aを定数とするとき、次の2次方程式の解の種類を判別しよう。
①$x^2(a-8)x+a=0$
②$x^2+2(a+1)x+2a^2+5=0$
この動画を見る
◎aを定数とするとき、次の2次方程式の解の種類を判別しよう。
①$x^2(a-8)x+a=0$
②$x^2+2(a+1)x+2a^2+5=0$
【高校数学】 数Ⅱ-30 2次方程式の解と判別式③
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次方程式の解の種類を判別しよう。
①$x^2-3x-1=0$
②$x^2+5x+7=0$
③$x^2+6x+9=0$
④$x^2+6x+2a+1=0$(aは定数とする)
この動画を見る
◎次の2次方程式の解の種類を判別しよう。
①$x^2-3x-1=0$
②$x^2+5x+7=0$
③$x^2+6x+9=0$
④$x^2+6x+2a+1=0$(aは定数とする)
【高校数学】 数Ⅱ-29 2次方程式の解と判別式②
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次方程式を解こう。
①$-2x^2-7=-6x$
②$(x+1)(x+3)=x(9-2x)$
◎次の2次方程式の実数解を求めよう。
③$2x^2-3x-3=0$
④$3x^2-8x+7=0$
⑤$4x^2+12x=9=0$
この動画を見る
◎次の2次方程式を解こう。
①$-2x^2-7=-6x$
②$(x+1)(x+3)=x(9-2x)$
◎次の2次方程式の実数解を求めよう。
③$2x^2-3x-3=0$
④$3x^2-8x+7=0$
⑤$4x^2+12x=9=0$
【高校数学】 数Ⅱ-28 2次方程式の解と判別式①
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次方程式を解こう。
①$x^2=9$
②$(x+1)^2=3$
③$x^2-7$
④$(x-2)^2=-6$
⑤$x^2+x+1=0$
⑥$x^2-4x+8=0$
この動画を見る
◎次の2次方程式を解こう。
①$x^2=9$
②$(x+1)^2=3$
③$x^2-7$
④$(x-2)^2=-6$
⑤$x^2+x+1=0$
⑥$x^2-4x+8=0$
【高校数学】 数Ⅱ-27 複素数⑤
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$α=\displaystyle \frac{3+i}{2+i}+\displaystyle \frac{x-i}{2-i}$がつぎのようになるとき、実数xの値を求めよう。
①$α$が実数
②$α$が純虚数
◎$x=-2+3i,y=-2-3i$のとき、次の式を求めよう。
③$x^2+y^2$
④$x^3+y^3$
⑤$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y}$
この動画を見る
◎$α=\displaystyle \frac{3+i}{2+i}+\displaystyle \frac{x-i}{2-i}$がつぎのようになるとき、実数xの値を求めよう。
①$α$が実数
②$α$が純虚数
◎$x=-2+3i,y=-2-3i$のとき、次の式を求めよう。
③$x^2+y^2$
④$x^3+y^3$
⑤$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y}$
【高校数学】 数Ⅱ-26 複素数④
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の数の平方根を書こう。
①$5$
②$9$
③$-7$
④$-16$
⑤$-12$
◎次の式を計算しよう。
⑥$\sqrt{ -12 }\sqrt{ -3 }$
⑦$\sqrt{ -18 }\sqrt{ 8 }$
⑧$\displaystyle \frac{\sqrt{ -2 }}{\sqrt{ 3 }}$
⑨$\displaystyle \frac{2+\sqrt{ -5 }}{2-\sqrt{ -5 }}$
この動画を見る
◎次の数の平方根を書こう。
①$5$
②$9$
③$-7$
④$-16$
⑤$-12$
◎次の式を計算しよう。
⑥$\sqrt{ -12 }\sqrt{ -3 }$
⑦$\sqrt{ -18 }\sqrt{ 8 }$
⑧$\displaystyle \frac{\sqrt{ -2 }}{\sqrt{ 3 }}$
⑨$\displaystyle \frac{2+\sqrt{ -5 }}{2-\sqrt{ -5 }}$
【高校数学】 数Ⅱ-25 複素数③
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の複素数と共役な複素数を書こう。
①$-7-2i$
②$2+9i$
③$3i$
④$-6$
◎次の式を計算して、$a+bi$(a,bは実数)の形にしよう。
⑤$\displaystyle \frac{7+i}{1+3i}$
⑥$\displaystyle \frac{2+3i}{2+i}$
⑦$\displaystyle \frac{2i}{3-i}$
この動画を見る
◎次の複素数と共役な複素数を書こう。
①$-7-2i$
②$2+9i$
③$3i$
④$-6$
◎次の式を計算して、$a+bi$(a,bは実数)の形にしよう。
⑤$\displaystyle \frac{7+i}{1+3i}$
⑥$\displaystyle \frac{2+3i}{2+i}$
⑦$\displaystyle \frac{2i}{3-i}$
【高校数学】 数Ⅱ-24 複素数②
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の式を計算しよう。
①$(5+2i)+(-2-i)$
②$(-12+3i)-(-7-2i)$
③$(1+3i)(2+i)$
④$(5-2i)^2$
⑤$(2+i)(2-i)$
⑦$7i^{3}$
この動画を見る
◎次の式を計算しよう。
①$(5+2i)+(-2-i)$
②$(-12+3i)-(-7-2i)$
③$(1+3i)(2+i)$
④$(5-2i)^2$
⑤$(2+i)(2-i)$
⑦$7i^{3}$
【高校数学】 数Ⅱ-23 複素数①
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の複素数の実部と虚部を書こう。
①$5-2i$
②$-7+i$
③$\displaystyle \frac{-2-3i}{5}$
④$-7$
⑤$2i$
◎次の等式を満たす実数x,yの値を求めよう。
⑥$(x+2)+(x-y)i=5-i$
⑦$(x+2y)+(x-6)i=0$
この動画を見る
◎次の複素数の実部と虚部を書こう。
①$5-2i$
②$-7+i$
③$\displaystyle \frac{-2-3i}{5}$
④$-7$
⑤$2i$
◎次の等式を満たす実数x,yの値を求めよう。
⑥$(x+2)+(x-y)i=5-i$
⑦$(x+2y)+(x-6)i=0$
【高校数学】 数Ⅱ-22 不等式の証明④
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0<a<b,a+b=1$のとき、$b、2ab、a^2+b^2$を小さい方から順に並べよう。
この動画を見る
◎$0<a<b,a+b=1$のとき、$b、2ab、a^2+b^2$を小さい方から順に並べよう。
【高校数学】 数Ⅱ-21 不等式の証明③
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0 , b \gt 0 $のとき、次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。
①$3a+\displaystyle \frac{5}{a} \geqq 2\sqrt{ 15 }$
②$(a+2b)(\displaystyle \frac{2}{a}+\displaystyle \frac{1}{b}) \geqq 8$
この動画を見る
◎$a \gt 0 , b \gt 0 $のとき、次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。
①$3a+\displaystyle \frac{5}{a} \geqq 2\sqrt{ 15 }$
②$(a+2b)(\displaystyle \frac{2}{a}+\displaystyle \frac{1}{b}) \geqq 8$
【数学】計算のスピードをアップさせろ!京大生が教える計算スピード向上術!【篠原好】
【高校数学】 数Ⅱ-20 不等式の証明②
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0 , b \gt 0 $のとき、$\sqrt{ 4a+9b } \gt 2\sqrt{ a }+3\sqrt{ b }$を証明しよう。
この動画を見る
◎$a \gt 0 , b \gt 0 $のとき、$\sqrt{ 4a+9b } \gt 2\sqrt{ a }+3\sqrt{ b }$を証明しよう。
【高校数学】 数Ⅱ-19 不等式の証明①
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。
①$x^2+4x+4=-y^2+2y-1$
②$a^2+b^2 \geqq 2 (a+b-1)$
この動画を見る
◎次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。
①$x^2+4x+4=-y^2+2y-1$
②$a^2+b^2 \geqq 2 (a+b-1)$
【高校数学】 数Ⅱ-18 等式の証明③
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x+y+z=3,xyz=3(xy+yz+zx)$のとき、x,y,zのうち少なくとも1つは 3に等しいことを証明しよう。
②$\displaystyle \frac{x+y}{z}=\displaystyle \frac{y+z}{x}=\displaystyle \frac{z+x}{y}$のとき、この式の値を求めよう。
この動画を見る
①$x+y+z=3,xyz=3(xy+yz+zx)$のとき、x,y,zのうち少なくとも1つは 3に等しいことを証明しよう。
②$\displaystyle \frac{x+y}{z}=\displaystyle \frac{y+z}{x}=\displaystyle \frac{z+x}{y}$のとき、この式の値を求めよう。
【高校数学】 数Ⅱ-17 等式の証明②
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\displaystyle \frac{a}{b}=\displaystyle \frac{c}{d}$のとき、$\displaystyle \frac{a^2-b^2}{a^2+b^2}=\displaystyle \frac{c^2-d^2}{c^2+d^2}$が成り立つことを証明しよう。
②$a:b:c=2:3:4$、abc≠0のとき、$\displaystyle \frac{ab+bc+ca}{a^2+b^2+c^2}$の値を求めよう。
この動画を見る
①$\displaystyle \frac{a}{b}=\displaystyle \frac{c}{d}$のとき、$\displaystyle \frac{a^2-b^2}{a^2+b^2}=\displaystyle \frac{c^2-d^2}{c^2+d^2}$が成り立つことを証明しよう。
②$a:b:c=2:3:4$、abc≠0のとき、$\displaystyle \frac{ab+bc+ca}{a^2+b^2+c^2}$の値を求めよう。
【高校数学】 数Ⅱ-16 等式の証明①
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$(a+2b)^2+(a-2b)^2=2(a^2+4b^2)$を証明しよう。
②$a+b+c=0$のとき、$a^2+ab+b^2=-(ab+bc+ca)$が成り立つことを証明しよう。
この動画を見る
①$(a+2b)^2+(a-2b)^2=2(a^2+4b^2)$を証明しよう。
②$a+b+c=0$のとき、$a^2+ab+b^2=-(ab+bc+ca)$が成り立つことを証明しよう。
【高校数学】 数Ⅱ-15 恒等式④
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x+y=1$を満たすx,yについて、常に$ax^2+by+cx=2$が成り立つとき、定数a,b,cの値を求めよう。
②$x^2+ax^2-3x+b$を$(x-2)$で割ると、余りが$-11x+2$になるとき、定数a,bの値を求めよう。
この動画を見る
①$x+y=1$を満たすx,yについて、常に$ax^2+by+cx=2$が成り立つとき、定数a,b,cの値を求めよう。
②$x^2+ax^2-3x+b$を$(x-2)$で割ると、余りが$-11x+2$になるとき、定数a,bの値を求めよう。
【高校数学】 数Ⅱ-14 恒等式③
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。
①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$
②$x^2+y^2=a(x+y)^2+b(x-y)^2$
この動画を見る
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。
①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$
②$x^2+y^2=a(x+y)^2+b(x-y)^2$
【高校数学】 数Ⅱ-13 恒等式②
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。
①$\displaystyle \frac{a}{x+1}+\displaystyle \frac{b}{x+3}=\displaystyle \frac{x+9}{(x+1)(x+3)}$
②$\displaystyle \frac{3}{x^3-1}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{bx+c}{x^2+x+1}$
この動画を見る
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。
①$\displaystyle \frac{a}{x+1}+\displaystyle \frac{b}{x+3}=\displaystyle \frac{x+9}{(x+1)(x+3)}$
②$\displaystyle \frac{3}{x^3-1}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{bx+c}{x^2+x+1}$
【高校数学】 数Ⅱ-12 恒等式①
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。
①$(3a+b)x+(2a-b-10)=0$
②$a(x-3)+b(x+1)=5x-3$
③$x^2=a(x-2)^2+b(х-2)+c$
この動画を見る
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。
①$(3a+b)x+(2a-b-10)=0$
②$a(x-3)+b(x+1)=5x-3$
③$x^2=a(x-2)^2+b(х-2)+c$