数学(高校生)
数学(高校生)
【数C】【複素数平面】複素数の大きさと式変形 ※問題文は概要欄

単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
$|z|=3$かつ$|z-2|=4$を満たす複素数$z$について、次の値を求めよ。
(1)$z\bar{z}$ (2) $z+\bar{z}$
この動画を見る
$|z|=3$かつ$|z-2|=4$を満たす複素数$z$について、次の値を求めよ。
(1)$z\bar{z}$ (2) $z+\bar{z}$
福田のおもしろ数学370〜フェルマーの小定理の証明

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
この動画を見る
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
福田のおもしろ数学369〜条件付きの不等式の証明JP

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$abc=1$, $a,b,c > 0$のとき
$a^{b+c}b^{c+a}c^{a+b} \leqq1$が成り立つことを証明せよ。
この動画を見る
$abc=1$, $a,b,c > 0$のとき
$a^{b+c}b^{c+a}c^{a+b} \leqq1$が成り立つことを証明せよ。
【中学数学】標本調査の問題演習~標準問題~【中3数学】

単元:
#数学(中学生)#中3数学#統計的な推測#標本調査
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)
白と黒の玉が合わせて500個入った袋がある。
この袋の中から30個を無作為に取り出すと、そのうちの12個が白い玉だった。袋の中の白い球はおよそ何個と表されるか?
(2)
池にいる魚の数を調べる。
1度20匹捕まえて印をつけ池に戻し
1週間後、今度は60匹の魚を捕まえたところ
そのうち4匹の魚に印がついていました。
この池には何匹の魚がいると考えられる?
この動画を見る
(1)
白と黒の玉が合わせて500個入った袋がある。
この袋の中から30個を無作為に取り出すと、そのうちの12個が白い玉だった。袋の中の白い球はおよそ何個と表されるか?
(2)
池にいる魚の数を調べる。
1度20匹捕まえて印をつけ池に戻し
1週間後、今度は60匹の魚を捕まえたところ
そのうち4匹の魚に印がついていました。
この池には何匹の魚がいると考えられる?
square root : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study #test

単元:
#数学(中学生)#中3数学#数と式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$(\sqtr{2}+\sqrt{3}+\sqrt{5})(\sqtr{2}+\sqrt{3}-\sqrt{5})×(\sqtr{2}-\sqrt{3}+\sqrt{5})(-\sqtr{2}+\sqrt{3}+\sqrt{5})=\boxed{ }$
この動画を見る
$(\sqtr{2}+\sqrt{3}+\sqrt{5})(\sqtr{2}+\sqrt{3}-\sqrt{5})×(\sqtr{2}-\sqrt{3}+\sqrt{5})(-\sqtr{2}+\sqrt{3}+\sqrt{5})=\boxed{ }$
【数C】【複素数平面】複素数の大きさ ※問題文は概要欄

単元:
#複素数平面#複素数平面#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師:
理数個別チャンネル
問題文全文(内容文):
$z=2-i$のとき、$|z+\displaystyle \frac{1}{z}|^2$の値を求めよ。
この動画を見る
$z=2-i$のとき、$|z+\displaystyle \frac{1}{z}|^2$の値を求めよ。
【数C】【複素数平面】実数であることの証明 ※問題文は概要欄

単元:
#複素数平面#複素数平面#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師:
理数個別チャンネル
問題文全文(内容文):
α、βを複素数とし、α≠0とするとき、次のことを証明せよ。
αβが実数 ⇔ β=kαとなる実数kがある
この動画を見る
α、βを複素数とし、α≠0とするとき、次のことを証明せよ。
αβが実数 ⇔ β=kαとなる実数kがある
2次方程式のこれ解ける?

単元:
#数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
aを定数とする。xの2次方程式
$3(x+a)^2 = (2a^2+1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値を全て求めよ。(灘高校 2024)
この動画を見る
aを定数とする。xの2次方程式
$3(x+a)^2 = (2a^2+1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値を全て求めよ。(灘高校 2024)
【共通テスト】数学の理想的な点数の獲り方のイメージ【Dead by Daylight】

単元:
#その他#勉強法#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【共通テスト】数学の理想的な点数の獲り方のイメージを解説していきます。【Dead by Daylight】
この動画を見る
【共通テスト】数学の理想的な点数の獲り方のイメージを解説していきます。【Dead by Daylight】
福田のおもしろ数学368〜多項式と二項係数の関係式の証明

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$P_k(x)=1+x+x^2+\cdots +x^{k-1}$のとき、
$\displaystyle \sum^n_{k=1}{} _nC_kP_k(x)=2^{n-1}P_n(\dfrac{1+x}2)$
が成り立つことを証明せよ。
この動画を見る
$P_k(x)=1+x+x^2+\cdots +x^{k-1}$のとき、
$\displaystyle \sum^n_{k=1}{} _nC_kP_k(x)=2^{n-1}P_n(\dfrac{1+x}2)$
が成り立つことを証明せよ。
この問題できる?

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{24n}$ が整数となる自然数 $n$ のうち最も小さいものを求めよ。
この動画を見る
$\sqrt{24n}$ が整数となる自然数 $n$ のうち最も小さいものを求めよ。
福田のおもしろ数学367〜3変数の不定方程式の整数解を求める考え方

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a,b,c$は$0$以上の整数であり、$a \geqq b \geqq c$を満たしている。
$a^3+9b^2+9c^2+7=1997$を満たす$(a,b,c)$を全て求めよ。
この動画を見る
$a,b,c$は$0$以上の整数であり、$a \geqq b \geqq c$を満たしている。
$a^3+9b^2+9c^2+7=1997$を満たす$(a,b,c)$を全て求めよ。
福田のおもしろ数学366〜漸化式で定義された数列の周期性を示す

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
数列 ${x_n}$ が $x_1$ を正の整数とし、
$
x_{n+1} =
\begin{cases}
\frac{1}{2}x_n & (x_n\text{ が偶数})\\
a+x_n & (x_n\text{ が奇数})
\end{cases}
$
($a$ は正の奇数) を満たしている。この数列の周期性を示せ。
この動画を見る
数列 ${x_n}$ が $x_1$ を正の整数とし、
$
x_{n+1} =
\begin{cases}
\frac{1}{2}x_n & (x_n\text{ が偶数})\\
a+x_n & (x_n\text{ が奇数})
\end{cases}
$
($a$ は正の奇数) を満たしている。この数列の周期性を示せ。
【今から20点UP】数学・理科の授業動画、一挙紹介!

福田のおもしろ数学365〜関数方程式を解こう

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
任意の実数 $x$, $y$ に対して
$f(x)f(y)=f(x-y)$
が成り立つような関数 $f(x)$ をすべて求めて下さい。
この動画を見る
任意の実数 $x$, $y$ に対して
$f(x)f(y)=f(x-y)$
が成り立つような関数 $f(x)$ をすべて求めて下さい。
【共通テスト】数学1A「場合の数・確率」の解法まとめ

単元:
#数A#場合の数と確率#場合の数#その他#勉強法#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【共通テスト】数学1A「場合の数・確率」の解法を解説していきます。
この動画を見る
【共通テスト】数学1A「場合の数・確率」の解法を解説していきます。
福田のおもしろ数学364〜2次の不定方程式の整数解が無数に存在することの証明

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$x^2+y^2+z^2=(x-y)(y-z)(z-x)$ を満たす整数の組 $(x,y,z)$ は無数に存在することを証明せよ。
この動画を見る
$x^2+y^2+z^2=(x-y)(y-z)(z-x)$ を満たす整数の組 $(x,y,z)$ は無数に存在することを証明せよ。
【数C】【複素数平面】基本公式と式変形 ※問題文は概要欄

単元:
#複素数平面#複素数平面#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師:
理数個別チャンネル
問題文全文(内容文):
複素数$z$が$3z+\bar{z}=2-2i$を満たすとき、以下の問いに答えよ。
(1)$3\bar{z}+z$を求めよ。
(2)$z$を求めよ。
この動画を見る
複素数$z$が$3z+\bar{z}=2-2i$を満たすとき、以下の問いに答えよ。
(1)$3\bar{z}+z$を求めよ。
(2)$z$を求めよ。
福田のおもしろ数学363〜定積分の計算

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$
\int_0^\pi (1+2x)\frac{\sin^3{x}}{1+\cos ^2 x} \mathrm{d}x
$
を計算して下さい。
この動画を見る
$
\int_0^\pi (1+2x)\frac{\sin^3{x}}{1+\cos ^2 x} \mathrm{d}x
$
を計算して下さい。
【共通テスト】数学者が共通テスト「数学2B」2024年の問題を解いてみた

単元:
#その他#勉強法#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【共通テスト】数学者が共通テスト「数学2B」2024年の問題を解いてみた動画です。
この動画を見る
【共通テスト】数学者が共通テスト「数学2B」2024年の問題を解いてみた動画です。
"2025"を含む予想問題(4):入試予想問題~全国入試問題解法
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x = \sqrt{2025}のとき$
$x^2 - 87x + 1890$を求めよ
この動画を見る
$x = \sqrt{2025}のとき$
$x^2 - 87x + 1890$を求めよ
福田のおもしろ数学361〜複雑な関数方程式の解

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
実数から実数への関数 $f(x)$ が任意の実数 $x$, $y$ に対して
$
f(yf(x+y)+f(x))=4x+2yf(x+y)
$
を満たしている。このような関数 $f(x)$ をすべて求めよ。
この動画を見る
実数から実数への関数 $f(x)$ が任意の実数 $x$, $y$ に対して
$
f(yf(x+y)+f(x))=4x+2yf(x+y)
$
を満たしている。このような関数 $f(x)$ をすべて求めよ。
【数Ⅲ】【積分とその応用】体積の2等分 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
a>0とする。曲線y=a²-x²(-a≦x≦a)とx軸で囲まれた部分を、軸の周りに1回転させてできる立体の体積を、曲線y=kx²をy軸の周りに1回転させてできる曲面で2等分したい。定数kの値を求めよ。
この動画を見る
a>0とする。曲線y=a²-x²(-a≦x≦a)とx軸で囲まれた部分を、軸の周りに1回転させてできる立体の体積を、曲線y=kx²をy軸の周りに1回転させてできる曲面で2等分したい。定数kの値を求めよ。
【数Ⅲ】【積分とその応用】回転体の体積が最大になるとき ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
0≦t≦π/2とする。曲線y=sinxおよび3直線x=t、x=2t, y=0で囲まれた部分を、x軸の周りに1回転させてできる立体の体積をV(t)とする。V(t)が最大になるの値をαとするとき、cosαを求めよ。
この動画を見る
0≦t≦π/2とする。曲線y=sinxおよび3直線x=t、x=2t, y=0で囲まれた部分を、x軸の周りに1回転させてできる立体の体積をV(t)とする。V(t)が最大になるの値をαとするとき、cosαを求めよ。
福田のおもしろ数学362〜定積分の等式の証明

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\int_0^πx f(sin x) dx=\frac{π}{2}\int_0^π f(sinx) dx$
を証明してください。
この動画を見る
$\int_0^πx f(sin x) dx=\frac{π}{2}\int_0^π f(sinx) dx$
を証明してください。
【共通テスト】数学者が共通テスト「数学1A」2024年の問題を解いてみた

単元:
#その他#勉強法#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【共通テスト】数学者が共通テスト「数学1A」2024年の問題を解いてみた動画です。
この動画を見る
【共通テスト】数学者が共通テスト「数学1A」2024年の問題を解いてみた動画です。
"2025"を含む予想問題(3):入試予想問題~全国入試問題解法
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$(5-2\sqrt{6})^{2025}×(5+2\sqrt{6})^{2026}×(4-\sqrt{6})$
$を計算せよ。$
この動画を見る
$(5-2\sqrt{6})^{2025}×(5+2\sqrt{6})^{2026}×(4-\sqrt{6})$
$を計算せよ。$
解ける?一橋大学の整数問題の難問! #Shorts #ずんだもん #勉強 #数学

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを2以上20以下の整数、
kを1以上n-1以下の整数とする。
n+2Ck+1=2(nCk-1+nCk+1)
が成り立つような整数の組(n,k)を求めよ。
この動画を見る
nを2以上20以下の整数、
kを1以上n-1以下の整数とする。
n+2Ck+1=2(nCk-1+nCk+1)
が成り立つような整数の組(n,k)を求めよ。
福田のおもしろ数学360〜1が連続1991個並ぶ数は素数か

"2025"を含む予想問題(2):入試予想問題~全国入試問題解法
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$4m^2-2025=n^2-2$
$となる自然数m,nの組のうちmが最小のものを求めよ。$
この動画を見る
$4m^2-2025=n^2-2$
$となる自然数m,nの組のうちmが最小のものを求めよ。$
