2次方程式
【中学数学】2次方程式:解から係数を決定! xについての2次方程式x²-(p+1)x-p²-3=0の1つの解が6のとき、pの値をすべて求めよ。
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
xについての2次方程式$x^2-(p+1)x-p^2-3=0$の1つの解が6のとき、pの値をすべて求めよ。
この動画を見る
xについての2次方程式$x^2-(p+1)x-p^2-3=0$の1つの解が6のとき、pの値をすべて求めよ。
【高校受験対策/数学】死守57
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57
①$6\times (-3)$を計算しなさい。
②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。
③$a^2b×21b \div 7a$を計算しなさい。
④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。
⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。
⑥二次方程式$x^2+5x+5=0$を解きなさい。
⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。
ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。
⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る
高校受験対策・死守57
①$6\times (-3)$を計算しなさい。
②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。
③$a^2b×21b \div 7a$を計算しなさい。
④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。
⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。
⑥二次方程式$x^2+5x+5=0$を解きなさい。
⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。
ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。
⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
【高校受験対策/数学】死守55
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
【高校受験対策/数学】死守53
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53
①$2-(-9)$を計算せよ。
②$52a^2b \div (-4a)$を計算せよ。
③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。
④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。
⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。
⑥2次方程式$x^2-5x-3=0$を解きなさい。
⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。
⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。
⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。
⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る
高校受験対策・死守53
①$2-(-9)$を計算せよ。
②$52a^2b \div (-4a)$を計算せよ。
③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。
④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。
⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。
⑥2次方程式$x^2-5x-3=0$を解きなさい。
⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。
⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。
⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。
⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
【中学数学】2次方程式:数に関する問題④ 連続する3つの負の整数がある。それぞれの数の平方の和は194である。この3つの数を求めよ。
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
連続する3つの負の整数がある。それぞれの数の平方の和は194である。この3つの数を求めよ。
この動画を見る
連続する3つの負の整数がある。それぞれの数の平方の和は194である。この3つの数を求めよ。
【中学数学】2次方程式:数に関する問題③ 連続する3つの自然数がある。そのうちの最小の数と最大の数の積は、3つの数の和の3倍より1小さい。この3つの数を求めよ。
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
連続する3つの自然数がある。そのうちの最小の数と最大の数の積は、3つの数の和の3倍より1小さい。この3つの数を求めよ。
この動画を見る
連続する3つの自然数がある。そのうちの最小の数と最大の数の積は、3つの数の和の3倍より1小さい。この3つの数を求めよ。
【中学数学】2次方程式:数に関する問題⑤ 連続する3つの正の奇数がある。最小の数の平方と最大の数の平方の和は、真ん中の数の16倍より6小さい。この3つの数を求めよ。
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
連続する3つの正の奇数がある。最小の数の平方と最大の数の平方の和は、真ん中の数の16倍より6小さい。この3つの数を求めよ。
この動画を見る
連続する3つの正の奇数がある。最小の数の平方と最大の数の平方の和は、真ん中の数の16倍より6小さい。この3つの数を求めよ。
【中学数学】2次方程式:数に関する問題② 差が3で、積が40になる2つの負の数を求めよ。
【中学数学】2次方程式:数に関する問題① ある正の数の平方は、もとの数の2倍より8だけ大きいという。もとの数を求めよ。
【中学数学】2次方程式:√2x²-3x+√2=0の解を求めよ。
単元:
#数学(中学生)#中3数学#2次方程式
教材:
#新中学問題集#新中学問題集(数学)発展編vol.3#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{2x^2}-3x+\sqrt=0$の解を求めよ。
この動画を見る
$\sqrt{2x^2}-3x+\sqrt=0$の解を求めよ。
【中学数学】 2次方程式:x²-5x-4=0の解を求めよ。
【高校受験対策/数学】死守52
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
この動画を見る
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
【中学数学】漫才で覚える2次方程式の解の公式【漫才】
大阪教育大 複雑な3乗根の外し方
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
この動画を見る
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
【中学数学】2次方程式:2次方程式x²+ax+b=0の解が3と8のとき、a,bの値を求めよ。
立教大 2次方程式の解 Mathematics Japanese university entrance exam
単元:
#2次方程式#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
この動画を見る
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
中学生でもわかる解の公式の証明【中3以上必見】
【12/28】中3冬特訓4日目
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x^3+x^2-x-1$を因数分解しなさい。
➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。
③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。
④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
この動画を見る
①$x^3+x^2-x-1$を因数分解しなさい。
➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。
③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。
④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
【高校受験対策】数学-死守34
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34
①$(-8)+(-4)$
②$-\frac{5}{7}+\frac{2}{3}$
③$65a^2b \div5a$
④$\frac{18}{\sqrt{2}}-\sqrt{98}$
⑤$(x+9)^2-(x-3)(x-7)$
⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。
⑦2次方程式$6x^2-2x-1=0$を解きなさい。
⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。
④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。
⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。
⑪
Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。
⑫
右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る
高校受験対策・死守34
①$(-8)+(-4)$
②$-\frac{5}{7}+\frac{2}{3}$
③$65a^2b \div5a$
④$\frac{18}{\sqrt{2}}-\sqrt{98}$
⑤$(x+9)^2-(x-3)(x-7)$
⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。
⑦2次方程式$6x^2-2x-1=0$を解きなさい。
⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。
④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。
⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。
⑪
Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。
⑫
右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
中学数学(2次方程式)【篠原好】
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
中3向け数学「2次方程式」についての講義です。
※問題文は動画内参照
この動画を見る
中3向け数学「2次方程式」についての講義です。
※問題文は動画内参照
【数学】中3-32 二次方程式の利用④(動点編)
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$AB=10cm$, $BC = 20cm$の長方形がある。
点$P$は辺$AB$上を毎秒$1cm$で$A$から$B$まで、
点$Q$は辺$AD$上を毎秒$2cm$で$D$から$A$まで 動く。$P$、$Q$が同時に出発するとき、 何秒後に$\triangle APQ $の面積が$24cm²$に なるかな?
【準備しよう!】
$AP=$②___$cm$
$BP=$③ ___$cm$
$AQ=$④___$cm$
$DQ=$⑤___$cm$
$t$の範囲は⑥______。
この動画を見る
①$AB=10cm$, $BC = 20cm$の長方形がある。
点$P$は辺$AB$上を毎秒$1cm$で$A$から$B$まで、
点$Q$は辺$AD$上を毎秒$2cm$で$D$から$A$まで 動く。$P$、$Q$が同時に出発するとき、 何秒後に$\triangle APQ $の面積が$24cm²$に なるかな?
【準備しよう!】
$AP=$②___$cm$
$BP=$③ ___$cm$
$AQ=$④___$cm$
$DQ=$⑤___$cm$
$t$の範囲は⑥______。
【数学】中3-30 二次方程式の利用②(容積編)
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎縦が横より4cm長い長方形の厚紙がある。
この4すみから1辺が3cmの正方形を切り取り、 ふたのない直方体の容器をつくると、その容積は 90cm³だった。
(横の長さをXcmとすると、 それぞれ
①___cm,② ___ cm,③ ___ cmになる。)
④はじめの厚紙の縦と横の長さは何cm?
※図は動画内参照
この動画を見る
◎縦が横より4cm長い長方形の厚紙がある。
この4すみから1辺が3cmの正方形を切り取り、 ふたのない直方体の容器をつくると、その容積は 90cm³だった。
(横の長さをXcmとすると、 それぞれ
①___cm,② ___ cm,③ ___ cmになる。)
④はじめの厚紙の縦と横の長さは何cm?
※図は動画内参照
【数学】中3-28 二次方程式⑤(まとめ編)
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$2(x+3) = (x-1)^2 $
②$ 5 = (x-1)^2$
③$x^2-x+ \displaystyle \frac{ 1 }{ 4 }=0$
④$3x^2-6x=0$
⑤$3x^2-6=0$
⑥$ x^2-10x+22=0$
⑦二次方程式$x^2+ax-14=0$ の解の$1$つが$2$のとき、$a$の値と もう$1$つの解を求めよう!
この動画を見る
①$2(x+3) = (x-1)^2 $
②$ 5 = (x-1)^2$
③$x^2-x+ \displaystyle \frac{ 1 }{ 4 }=0$
④$3x^2-6x=0$
⑤$3x^2-6=0$
⑥$ x^2-10x+22=0$
⑦二次方程式$x^2+ax-14=0$ の解の$1$つが$2$のとき、$a$の値と もう$1$つの解を求めよう!
【数学】中3-29 二次方程式の利用①(正の整数編)
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①連続する2つの正の整数がある。
それぞれを2乗した数の和が61のとき、
この2つの数はいくつ?
②ある正の数$x$を、2乗しなければ ならないところを、間違えて2倍した ので、計算の結果が48小さくなった。
この正の数入はいくつ?
③連続する3つの正の整数がある。
まん中の数の2乗は、残りの2数の和 の3倍より7大きい。
3つの数はいくつ?
この動画を見る
計算せよ。
①連続する2つの正の整数がある。
それぞれを2乗した数の和が61のとき、
この2つの数はいくつ?
②ある正の数$x$を、2乗しなければ ならないところを、間違えて2倍した ので、計算の結果が48小さくなった。
この正の数入はいくつ?
③連続する3つの正の整数がある。
まん中の数の2乗は、残りの2数の和 の3倍より7大きい。
3つの数はいくつ?
【数学】中3-27 二次方程式④(因数分解とのコラボ編)
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$x^2+x-12=0$
②$x^2+9x+20=0$
③$x^2-6x+9=0$
④$x^2+5x=0$
⑤$2x^2+6x-8=0$
⑥$x^2=9x$
⑦$x(x+4)=-4$
⑧$2x(x+4)=2(2x+3)$
⑨$3x^2=5x$
この動画を見る
計算せよ。
①$x^2+x-12=0$
②$x^2+9x+20=0$
③$x^2-6x+9=0$
④$x^2+5x=0$
⑤$2x^2+6x-8=0$
⑥$x^2=9x$
⑦$x(x+4)=-4$
⑧$2x(x+4)=2(2x+3)$
⑨$3x^2=5x$
【数学】中3-26 二次方程式③(解の公式編)
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①x=____
計算せよ。
②$x^2-3x+1=0$
③$2x^2-9x+7=0$
④$x^2-x-5=3(x-1)$
⑤$x(x-1)=-3(x-5)$
この動画を見る
①x=____
計算せよ。
②$x^2-3x+1=0$
③$2x^2-9x+7=0$
④$x^2-x-5=3(x-1)$
⑤$x(x-1)=-3(x-5)$
【数学】中3-24 二次方程式①(基本編)
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
($x$の二次式)=0という形の方程式を$x$についての①____という。
解き方は、左辺の2乗を②____、
右辺に③____をつける!!
④$x^2=12$
⑤$2x^2=18$
⑥$5x^2-35=0$
⑦$9x^2-5=0$
⑧$2x^2-96=0$
⑨$2x^2-288=0$
⑩$4x^2+5=8$
⑪$5x^2-2=0$
⑫$1,2,3,4$のうち、$x^2-4x+3=0$
の解をすべて解こう!!
この動画を見る
($x$の二次式)=0という形の方程式を$x$についての①____という。
解き方は、左辺の2乗を②____、
右辺に③____をつける!!
④$x^2=12$
⑤$2x^2=18$
⑥$5x^2-35=0$
⑦$9x^2-5=0$
⑧$2x^2-96=0$
⑨$2x^2-288=0$
⑩$4x^2+5=8$
⑪$5x^2-2=0$
⑫$1,2,3,4$のうち、$x^2-4x+3=0$
の解をすべて解こう!!
【数学】中3-25 二次方程式②(応用編)
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$ x ^ 2 = 9$
②$(x + 4) ^ 2 = 5 $
③ $(x - 2) ^ 2 = 25$
④$ 3 (x + 1) ^ 2 = 6$
⑤$4 (x + 6) ^ 2 - 36 = 0$
⑥$x ^ 2 + 4x = 14$
⑦$ x ^ 2 - 6x = 3$
⑧ $x ^ 2 + 2x - 15 = 0$
この動画を見る
計算せよ。
①$ x ^ 2 = 9$
②$(x + 4) ^ 2 = 5 $
③ $(x - 2) ^ 2 = 25$
④$ 3 (x + 1) ^ 2 = 6$
⑤$4 (x + 6) ^ 2 - 36 = 0$
⑥$x ^ 2 + 4x = 14$
⑦$ x ^ 2 - 6x = 3$
⑧ $x ^ 2 + 2x - 15 = 0$
【数学】中3-21 ルートの計算のまとめ
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$3\sqrt{ 2 }-\displaystyle \frac{8}{\sqrt{ 2 }}+\sqrt{ 72 }$
②$\sqrt{ \displaystyle \frac{2}{5}} -\displaystyle \frac{6}{\sqrt{ 10 }}$
③$\displaystyle \frac{20}{\sqrt{ 5 }}-\sqrt{ 24 }-2\sqrt{ 45 }+\sqrt{ \displaystyle \frac{3}{2} }$
④$2\sqrt{ 6 } \times (\sqrt{ 3 })+\displaystyle \frac{10}{\sqrt{ 2 }}$
⑤$5\sqrt{ 30 } \div (-2\sqrt{ 6 })+\sqrt{ 45 }$
⑥$2\sqrt{ 7 }-\sqrt{ 2 } \div \sqrt{ 14 }$
この動画を見る
計算せよ。
①$3\sqrt{ 2 }-\displaystyle \frac{8}{\sqrt{ 2 }}+\sqrt{ 72 }$
②$\sqrt{ \displaystyle \frac{2}{5}} -\displaystyle \frac{6}{\sqrt{ 10 }}$
③$\displaystyle \frac{20}{\sqrt{ 5 }}-\sqrt{ 24 }-2\sqrt{ 45 }+\sqrt{ \displaystyle \frac{3}{2} }$
④$2\sqrt{ 6 } \times (\sqrt{ 3 })+\displaystyle \frac{10}{\sqrt{ 2 }}$
⑤$5\sqrt{ 30 } \div (-2\sqrt{ 6 })+\sqrt{ 45 }$
⑥$2\sqrt{ 7 }-\sqrt{ 2 } \div \sqrt{ 14 }$
【数学】中3-18 ルートのかけ算・わり算
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算が終わったら必ず$\sqrt{ }$の①____をしよう!
②$\sqrt{ 3 } \times \sqrt{ 6 }=$
③$\sqrt{ 28 } \div (-\sqrt{ 7 })=$
④$(-\sqrt{ 2 }) \times (-\sqrt{ 3 }) =$
⑤$3\sqrt{ 2 } \times (-2\sqrt{ 5 })=$
⑥$2\sqrt{ 12 } \times 3\sqrt{ 2 }=$
⑦$-6\sqrt{ 8 } \div 3\sqrt{ 2 }=$
⑧$(-\sqrt{ 6 }) \div (-\sqrt{ 96 })=$
⑨$4\sqrt{ 2 } \times 3\sqrt{ 18 }$
⑩$\sqrt{ 24 } \div \sqrt{ 8 } \times (-\sqrt{ 6 })=$
⑪$-\sqrt{ 10 } \div (-\sqrt{ 15 }) \times (\sqrt{ 42 })=$
⑫$\sqrt{ 28 } \times \sqrt{ 35 }=$
この動画を見る
計算が終わったら必ず$\sqrt{ }$の①____をしよう!
②$\sqrt{ 3 } \times \sqrt{ 6 }=$
③$\sqrt{ 28 } \div (-\sqrt{ 7 })=$
④$(-\sqrt{ 2 }) \times (-\sqrt{ 3 }) =$
⑤$3\sqrt{ 2 } \times (-2\sqrt{ 5 })=$
⑥$2\sqrt{ 12 } \times 3\sqrt{ 2 }=$
⑦$-6\sqrt{ 8 } \div 3\sqrt{ 2 }=$
⑧$(-\sqrt{ 6 }) \div (-\sqrt{ 96 })=$
⑨$4\sqrt{ 2 } \times 3\sqrt{ 18 }$
⑩$\sqrt{ 24 } \div \sqrt{ 8 } \times (-\sqrt{ 6 })=$
⑪$-\sqrt{ 10 } \div (-\sqrt{ 15 }) \times (\sqrt{ 42 })=$
⑫$\sqrt{ 28 } \times \sqrt{ 35 }=$