2次関数
【高校受験対策/数学】死守65
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(展開、因数分解)#2次方程式#比例・反比例#平行と合同#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守65
①右の図のように、直線$l$、直線$m$と2つの直線が交わっている。
$\angle a,\angle b,\angle c,\angle d,\angle e$のうち、どの角とどの角が等しければ、直線$l$と直線$m$が平行であるといえるか、その2つの角を答えなさい。
②$x^2-10x+25$を因数分解しなさい。
③2次方程式$(2x-5)^2=18$を解きなさい。
④右のア~オのうち、絶対値が最も大きい数を選び、記号で答えなさい。
ア $3.2$
イ $-\frac{7}{2}$
ウ $2\sqrt{2}$
エ $\frac{10}{3}$
オ $-3$
⑤右のア~オのうち、$y$が$x$に比例するものをすべて選び、記号で答えなさい。
ア 自然数$x$の約数の個数は$y$ 個である。
イ $x$ 円の商品を1000円支払って買うとき、おつりは$y$ 円である。
ウ 1200mの道のりを分速$x$ mの速さで進むとき、かかる時間は$y$ 分である。
エ 15%の食塩水が$x$ gあるとき、この食塩水に含まれる食塩の量は$y$ gである。
オ 何も入っていない容器に水を毎分2Lずつ$x$ 分間入れるとき、たまる水の量は$y$ Lである。
⑥右のア~オのうち、関数$y=2x^2$ついて述べた文として正しいものをすべて選び、記号で答えなさい。
ア この関数のグラフは、原点を通る。
イ $x \gt 0$のとき、$x$が増加すると$y$は減少する。
ウ この関数のグラフは$x$ 軸について対称である。
エ $x$の変域が$-1 \leqq x \leqq 2$のとき、$y$の変域は$0 \leqq y \leqq 8$である。
オ $x$の値がどの値からどの値まで増加するかに関わらず、変化の割合は常に2である。
この動画を見る
高校受験対策・死守65
①右の図のように、直線$l$、直線$m$と2つの直線が交わっている。
$\angle a,\angle b,\angle c,\angle d,\angle e$のうち、どの角とどの角が等しければ、直線$l$と直線$m$が平行であるといえるか、その2つの角を答えなさい。
②$x^2-10x+25$を因数分解しなさい。
③2次方程式$(2x-5)^2=18$を解きなさい。
④右のア~オのうち、絶対値が最も大きい数を選び、記号で答えなさい。
ア $3.2$
イ $-\frac{7}{2}$
ウ $2\sqrt{2}$
エ $\frac{10}{3}$
オ $-3$
⑤右のア~オのうち、$y$が$x$に比例するものをすべて選び、記号で答えなさい。
ア 自然数$x$の約数の個数は$y$ 個である。
イ $x$ 円の商品を1000円支払って買うとき、おつりは$y$ 円である。
ウ 1200mの道のりを分速$x$ mの速さで進むとき、かかる時間は$y$ 分である。
エ 15%の食塩水が$x$ gあるとき、この食塩水に含まれる食塩の量は$y$ gである。
オ 何も入っていない容器に水を毎分2Lずつ$x$ 分間入れるとき、たまる水の量は$y$ Lである。
⑥右のア~オのうち、関数$y=2x^2$ついて述べた文として正しいものをすべて選び、記号で答えなさい。
ア この関数のグラフは、原点を通る。
イ $x \gt 0$のとき、$x$が増加すると$y$は減少する。
ウ この関数のグラフは$x$ 軸について対称である。
エ $x$の変域が$-1 \leqq x \leqq 2$のとき、$y$の変域は$0 \leqq y \leqq 8$である。
オ $x$の値がどの値からどの値まで増加するかに関わらず、変化の割合は常に2である。
塾技!学校では教えてくれない!?二次関数の変化の割合を3秒で求める最強公式はコレだ!!【生徒からの質問19】
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
こばちゃん塾
問題文全文(内容文):
$y=ax^2$について、$- \frac{1}{3} \leqq x \leqq \frac{4}{3}$のときの変化の割合が、$y= - \frac{2}{5} x + 300$と同じであるとき、aの値を求めよう
この動画を見る
$y=ax^2$について、$- \frac{1}{3} \leqq x \leqq \frac{4}{3}$のときの変化の割合が、$y= - \frac{2}{5} x + 300$と同じであるとき、aの値を求めよう
【高校受験対策/数学】関数52
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数52
Q
太郎さんが所属するサッカー部で、オリジナルタオルを作ることになり、かかる費用を調べたところ、A店とB店の料金はそれぞれ表1、表2のようになっていた。
また、右の図はA店で タオルを作る枚数を$x$ 枚としたときのかかる費用を$y$ 円として、$x$と$y$の関係をグラフに 表したものである。
ただし、このグラフで端の点をふくむ場合は●、ふくまない場合は○で表している。
ただし、消費税は考えないものとする。
【表1】 A店の料金
枚数によって、金額は次の通りです。
・20枚までは何枚でも、3500円
・21枚から50枚までは何枚でも6500円
・51枚から80枚までは何枚でも9000円
【表2】 B店の料金
注文の時に初期費用として3000円かかり、それに加えてタオル1枚につき100円かかります。
①B店でタオルを作る枚数を$x$ 枚としたときのかかる費用を$y$ 円として、$y$を$x$の式で表しなさい。
②A店、B店でそれぞれタオルを30枚作るとき、かかる費用はどちらの店がいくら安いか求めなさい。
③タオルを作る枚数を40枚から80枚までとしたとき、B店で作るときにかかる費用がA店で作るときにかかる費用よりも安くなるのは、何枚以上何枚以下のときか求めなさい。
この動画を見る
高校受験対策・関数52
Q
太郎さんが所属するサッカー部で、オリジナルタオルを作ることになり、かかる費用を調べたところ、A店とB店の料金はそれぞれ表1、表2のようになっていた。
また、右の図はA店で タオルを作る枚数を$x$ 枚としたときのかかる費用を$y$ 円として、$x$と$y$の関係をグラフに 表したものである。
ただし、このグラフで端の点をふくむ場合は●、ふくまない場合は○で表している。
ただし、消費税は考えないものとする。
【表1】 A店の料金
枚数によって、金額は次の通りです。
・20枚までは何枚でも、3500円
・21枚から50枚までは何枚でも6500円
・51枚から80枚までは何枚でも9000円
【表2】 B店の料金
注文の時に初期費用として3000円かかり、それに加えてタオル1枚につき100円かかります。
①B店でタオルを作る枚数を$x$ 枚としたときのかかる費用を$y$ 円として、$y$を$x$の式で表しなさい。
②A店、B店でそれぞれタオルを30枚作るとき、かかる費用はどちらの店がいくら安いか求めなさい。
③タオルを作る枚数を40枚から80枚までとしたとき、B店で作るときにかかる費用がA店で作るときにかかる費用よりも安くなるのは、何枚以上何枚以下のときか求めなさい。
【中学数学】関数y=ax²:y=1/2x²とy=ax+bが2点A,Bで交わっている。点A,Bのx座標がそれぞれ-2,3のとき (1)点Aの座標 (2)直線ABの式 (3)△OABの面積 を求めよ。
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$y=ax^2:y=\dfrac{1}{2}x^2$と$y=ax+b$が2点A,Bで交わっている。点A,Bのx座標がそれぞれ-2,3のとき
(1)点Aの座標
(2)直線ABの式
(3)△OABの面積
を求めよ。
この動画を見る
関数$y=ax^2:y=\dfrac{1}{2}x^2$と$y=ax+b$が2点A,Bで交わっている。点A,Bのx座標がそれぞれ-2,3のとき
(1)点Aの座標
(2)直線ABの式
(3)△OABの面積
を求めよ。
【高校受験対策/数学】死守61
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#1次関数#2次関数#文字と式#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守6
①$-5+2$を計算しなさい。
➁$6 \times \frac{2a+1}{3}$を計算しなさい。
③$(\sqrt{7}-1)(\sqrt{7}+1)$を計算しなさい。
④連立方程式を解きなさい。
$y=x+6$
$y=-2x+3$
⑤2次方程式$x^2-3x-2=0$を解きなさい。
⑥1辺の長さが$x$ cmの正方形が あります。
この正方形の周の長さを$y$ cmとするとき、$y$を$x$の式で表しなさい。
⑦34人の団体Xと40人の団体Yが博物館に行きます。
この博物館の1人分の入館料は$a$円で、40人以上の団体の入館料は20%引きになります。
このとき、団体Xと団体Yでは入館料の合計はどちらが多くかかりますか。
その理由をことばや式を用いて書きなさい。ただし消費税は考えないものとする。
⑧右の図で、3点、A、B、Cは円$o$の周上にあります。 このとき$\angle x$の大きさを求めなさい。
⑨右下の図のような長方形ABCDの紙を、 頂点Aが頂点Cに重なるように折ったときの折り目の線分を作図によって求めなさい。
ただし、作図には定規とコンパスを用い作図に使った線は消さないでおくこと。
この動画を見る
高校受験対策・死守6
①$-5+2$を計算しなさい。
➁$6 \times \frac{2a+1}{3}$を計算しなさい。
③$(\sqrt{7}-1)(\sqrt{7}+1)$を計算しなさい。
④連立方程式を解きなさい。
$y=x+6$
$y=-2x+3$
⑤2次方程式$x^2-3x-2=0$を解きなさい。
⑥1辺の長さが$x$ cmの正方形が あります。
この正方形の周の長さを$y$ cmとするとき、$y$を$x$の式で表しなさい。
⑦34人の団体Xと40人の団体Yが博物館に行きます。
この博物館の1人分の入館料は$a$円で、40人以上の団体の入館料は20%引きになります。
このとき、団体Xと団体Yでは入館料の合計はどちらが多くかかりますか。
その理由をことばや式を用いて書きなさい。ただし消費税は考えないものとする。
⑧右の図で、3点、A、B、Cは円$o$の周上にあります。 このとき$\angle x$の大きさを求めなさい。
⑨右下の図のような長方形ABCDの紙を、 頂点Aが頂点Cに重なるように折ったときの折り目の線分を作図によって求めなさい。
ただし、作図には定規とコンパスを用い作図に使った線は消さないでおくこと。
【一度は解きたい入試の良問】二次方程式:お茶の水女子大学付属高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#お茶の水女子大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 お茶の水女子大学付属高等学校
$x$についての$2$次方程式
$x^2 + (a + 2)x + a^2+2a − 1 = 0$
解の$1$つが$a$である。
$a$の値を求めよ。
この動画を見る
入試問題 お茶の水女子大学付属高等学校
$x$についての$2$次方程式
$x^2 + (a + 2)x + a^2+2a − 1 = 0$
解の$1$つが$a$である。
$a$の値を求めよ。
【高校数学へのパスポート】二次関数:滋賀県高校入試~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#滋賀県公立高校入試
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 滋賀県の高校
次の問いに答えなさい。
関数$y = ax^2$ について、
$ -3\leqq x \leqq 1$のとき、
$ 0\leqq y \leqq 1$である。
このとき、$a$の値を求めなさい。
この動画を見る
入試問題 滋賀県の高校
次の問いに答えなさい。
関数$y = ax^2$ について、
$ -3\leqq x \leqq 1$のとき、
$ 0\leqq y \leqq 1$である。
このとき、$a$の値を求めなさい。
【中学数学】2次関数の演習~北海道公立高校入試標準2019~【高校受験】
単元:
#数学(中学生)#中3数学#2次関数#北海道公立高校入試
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内図のように2つの関数$y= x^2$...①、$y= \displaystyle \frac{1}{3} x^2$・・・②のグラフがあります。
②のグラフ上に点Aがあり、点Aの$x$座標が正の数とします。
点Aを通り、$y$軸に平行な直線と①のグラフの交点をBとし、点Aと$y$軸について対称な点をCとします。
点0は原点とします。
【問】
1⃣
点Aの$x$座標が2のとき、点Cの座標を求めなさい。
2⃣
点Bの$x$座標が6のとき、2点B,Cを通る直線の傾きを求めなさい。
3⃣
点Aの$x$座標をtとします。
△ABCが直角二等辺三角形となるとき、tの値を求めよ。
この動画を見る
動画内図のように2つの関数$y= x^2$...①、$y= \displaystyle \frac{1}{3} x^2$・・・②のグラフがあります。
②のグラフ上に点Aがあり、点Aの$x$座標が正の数とします。
点Aを通り、$y$軸に平行な直線と①のグラフの交点をBとし、点Aと$y$軸について対称な点をCとします。
点0は原点とします。
【問】
1⃣
点Aの$x$座標が2のとき、点Cの座標を求めなさい。
2⃣
点Bの$x$座標が6のとき、2点B,Cを通る直線の傾きを求めなさい。
3⃣
点Aの$x$座標をtとします。
△ABCが直角二等辺三角形となるとき、tの値を求めよ。
【高校受験対策/数学】関数50
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数50
右の図のように、2つの関数$y=\frac{1}{2}x^2$・・・①、$y=x^2$・・・②のグラフがあります。
①のグラフ上に、点Aがあり、点Aの$x$座標を$t$とします。
点Aと軸について対称な点をBとし、点Aと$x$座標が等しい②のグラフ上の点をCとします。
また、②のグラフ上に点Dがあり、点Dの$x$座標を負の数とします。
$t \gt 0$として、次の問いに答えなさい。
問1 四角形ABCDが長方形となるとき、点Dの座標を$t$を使って表しなさい。
問2 $t=4$とします。点Cを通り傾きが$ー3$の直線の式を求めなさい。
問3 2点B,Cを通る直線の傾きが$-2と$なるとき、点Aの座標を求めなさい。
この動画を見る
高校受験対策・関数50
右の図のように、2つの関数$y=\frac{1}{2}x^2$・・・①、$y=x^2$・・・②のグラフがあります。
①のグラフ上に、点Aがあり、点Aの$x$座標を$t$とします。
点Aと軸について対称な点をBとし、点Aと$x$座標が等しい②のグラフ上の点をCとします。
また、②のグラフ上に点Dがあり、点Dの$x$座標を負の数とします。
$t \gt 0$として、次の問いに答えなさい。
問1 四角形ABCDが長方形となるとき、点Dの座標を$t$を使って表しなさい。
問2 $t=4$とします。点Cを通り傾きが$ー3$の直線の式を求めなさい。
問3 2点B,Cを通る直線の傾きが$-2と$なるとき、点Aの座標を求めなさい。
【必出!グラフを意識できるか】二次関数:高知県高校入試~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#高知県公立高校入試
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 高知県の高校
次の問いに答えなさい。
関数$y=-x^2 $について、
$-2 \leqq x \leqq 3$とき、
$a \leqq y \leqq b$である。
このとき、$a、b$の値を 求めよ。
この動画を見る
入試問題 高知県の高校
次の問いに答えなさい。
関数$y=-x^2 $について、
$-2 \leqq x \leqq 3$とき、
$a \leqq y \leqq b$である。
このとき、$a、b$の値を 求めよ。
【中学数学】2次関数の演習~京都府公立高校入試前期選抜2019~【高校受験】
単元:
#中3数学#2次関数
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内図のように、関数$y=ax^2$のグラフ上に2点A,Bがあり、2点A,Bの$x$座標はそれぞれ-3,6である。
また、2点0,Bを通る直線の傾きは$\displaystyle \frac{3}{2}$である。
2点A、Bを通る直線と$y$軸との交点をCとする。
(1) aの値を求めよ。
(2) 直線ABの式を求めよ。
(3) $x$軸上に$x$座標が正である点Dをとる。
点Dを通り、傾きが$\displaystyle \frac{6}{25}$である直線を$y$軸との交点をEとする。
△OCA=△OEDであるとき、2点D,Eの座標をそれぞれ求めよ。
この動画を見る
動画内図のように、関数$y=ax^2$のグラフ上に2点A,Bがあり、2点A,Bの$x$座標はそれぞれ-3,6である。
また、2点0,Bを通る直線の傾きは$\displaystyle \frac{3}{2}$である。
2点A、Bを通る直線と$y$軸との交点をCとする。
(1) aの値を求めよ。
(2) 直線ABの式を求めよ。
(3) $x$軸上に$x$座標が正である点Dをとる。
点Dを通り、傾きが$\displaystyle \frac{6}{25}$である直線を$y$軸との交点をEとする。
△OCA=△OEDであるとき、2点D,Eの座標をそれぞれ求めよ。
【中学数学】テストによく出るグラフのイメージ 4-0【中3数学】
関数:豊島岡女子学園高校~全国入試問題解法
単元:
#数学(中学生)#中1数学#中2数学#中3数学#比例・反比例#1次関数#2次関数#高校入試過去問(数学)#豊島岡女子高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 豊島岡女子学園高等学校
$y=\displaystyle \frac{1}{2}x^2$と$y=\displaystyle \frac{a}{x}$について、
$x=\displaystyle \frac{1}{2}$から$x = 3$までの変化の割合が 等しいとき、
定数の$a$値を求めなさい。
この動画を見る
入試問題 豊島岡女子学園高等学校
$y=\displaystyle \frac{1}{2}x^2$と$y=\displaystyle \frac{a}{x}$について、
$x=\displaystyle \frac{1}{2}$から$x = 3$までの変化の割合が 等しいとき、
定数の$a$値を求めなさい。
グラフ:山口県高校入試~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#山口県公立高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 山口県の高校
図のように
関数$y= x^2$のグラフと$4$正方形$ABCD$がある。
$2$点$A, D$の$y$座標はいずれも$24$。
$2$点$B,C$は、$x$座標上の点で、
$x$座標はそれぞれ$-12,12$。
関数$y=\displaystyle \frac{1}{4}x^2$のグラフ上にある点のうち、正方形$ABCD$の内部および辺上にあり、
$x$座標、$y$座標がともに整数である点の個数を求めなさい。
※図は動画内参照
この動画を見る
入試問題 山口県の高校
図のように
関数$y= x^2$のグラフと$4$正方形$ABCD$がある。
$2$点$A, D$の$y$座標はいずれも$24$。
$2$点$B,C$は、$x$座標上の点で、
$x$座標はそれぞれ$-12,12$。
関数$y=\displaystyle \frac{1}{4}x^2$のグラフ上にある点のうち、正方形$ABCD$の内部および辺上にあり、
$x$座標、$y$座標がともに整数である点の個数を求めなさい。
※図は動画内参照
【中学数学】関数y=ax²:点A,Bは放物線y=x²上の点であり、そのx座標はそれぞれ 3,2である。△AOBの面積を求めよう。
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
点A,Bは放物線$y=x^2$上の点であり、そのx座標はそれぞれ 3,2である。△AOBの面積を求めよう。
この動画を見る
点A,Bは放物線$y=x^2$上の点であり、そのx座標はそれぞれ 3,2である。△AOBの面積を求めよう。
【中学数学】関数y=ax²:変域③ 関数y=2/3x²とy=-1/3x²について、xの変域が次のときyの変域をそれぞれ求めなさい。(1)-6≦x≦0 (2)3≦x≦9 (3)-6≦x≦9
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$y=\dfrac{2}{3}x^2$と$y=-\dfrac{1}{3}x^2$について、xの変域が次のときyの変域をそれぞれ求めなさい。
(1)$-6\leqq x\leqq 0$ (2)$3\leqq x\leqq 9$ (3)$-6\leqq x\leqq 9$
この動画を見る
関数$y=\dfrac{2}{3}x^2$と$y=-\dfrac{1}{3}x^2$について、xの変域が次のときyの変域をそれぞれ求めなさい。
(1)$-6\leqq x\leqq 0$ (2)$3\leqq x\leqq 9$ (3)$-6\leqq x\leqq 9$
【中学数学】関数y=ax²:変域② 次のそれぞれについて、yの変域を求めよ。(1)関数y=x²で、xの変域が-4≦x≦2。(2)関数y=-x²で、xの変域が-4≦x≦2
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のそれぞれについて、yの変域を求めよ。
(1)関数$y=x^2$で、xの変域が$-4\leqq x\leqq 2$。
(2)関数$y=-x^2$で、xの変域が$-4\leqq x\leqq 2$
この動画を見る
次のそれぞれについて、yの変域を求めよ。
(1)関数$y=x^2$で、xの変域が$-4\leqq x\leqq 2$。
(2)関数$y=-x^2$で、xの変域が$-4\leqq x\leqq 2$
【中学数学】関数y=ax²:変域① 次のそれぞれについて、yの変域を求めよ。(1)関数y=x²で、xの変域が2≦x≦4。(2)関数y=-x²で、xの変域が2≦x≦4
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のそれぞれについて、yの変域を求めよ。
(1)関数$y=x^2$で、xの変域が$2\leqq x\leqq4$。
(2)関数$y=-x^2$で、xの変域が$2\leqq x\leqq 4$
この動画を見る
次のそれぞれについて、yの変域を求めよ。
(1)関数$y=x^2$で、xの変域が$2\leqq x\leqq4$。
(2)関数$y=-x^2$で、xの変域が$2\leqq x\leqq 4$
【高校数学】平方完成の裏技~誰でもできるようになる~【数学Ⅰ】
【高校受験対策/数学】死守56
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56
①$4-6 \div (-2)$を計算しなさい。
②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。
③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。
④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。
⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。
⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。
⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。
⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る
高校受験対策・死守56
①$4-6 \div (-2)$を計算しなさい。
②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。
③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。
④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。
⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。
⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。
⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。
⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
【高校受験対策/数学】死守55
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
【中学数学】関数y=ax²:2次関数y=ax²の変化の割合を素早く求める方法!学校では教えてくれない必殺技!!
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
$y=\dfrac{1}{2}x^2$で、xの値が2から4まで増加するときの変化の割合を求めましょう。
この動画を見る
$y=\dfrac{1}{2}x^2$で、xの値が2から4まで増加するときの変化の割合を求めましょう。
【中学数学】関数:比例、反比例、1次関数、2次関数のそれぞれの特徴とポイントをわかりやすく解説!!
単元:
#数学(中学生)#中1数学#中2数学#中3数学#比例・反比例#1次関数#2次関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
比例、反比例、1次関数、2次関数のそれぞれの特徴とポイントをわかりやすく解説します!!
この動画を見る
比例、反比例、1次関数、2次関数のそれぞれの特徴とポイントをわかりやすく解説します!!
【高校受験対策/数学/関数46】ひし形の面積を二等分せよ。
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数46
Q
右の図において、①は関数$y=x^2$、②は関数$y=ax^2$のグラフであり、$a \lt 0$である。
点A,Bは①のグラフ上にあり、点Aの$x$座標は$2$で、点Aと点Bの$y$座標は等しい。
点Cを$y$軸上にとり、点Oと点A、点Oと点B、点AとC、点Bと点Cをそれぞれ結んで、ひし形OACBをつくる。
また、②のグラフ上に点Aと$x$座標が等しい点Dをとる。
このとき次の各問いに答えなさい。
問1
2点O,Bを通る直線の式を求めよ。
問2
点Cの座標を求めよ。
問3
$x$軸上に点$(3,0)$をとる。
点$(3,0)$を通り、ひし形OACBの面積を2等分する直線の式を求めよ。
問4
点Oと点Dを結んだ線分ODを1辺とする正方形をつくる。
この正方形とひし形OACBの面積の比が$25:64$であるとき、$a$の値を求めよ。
この動画を見る
高校受験対策・関数46
Q
右の図において、①は関数$y=x^2$、②は関数$y=ax^2$のグラフであり、$a \lt 0$である。
点A,Bは①のグラフ上にあり、点Aの$x$座標は$2$で、点Aと点Bの$y$座標は等しい。
点Cを$y$軸上にとり、点Oと点A、点Oと点B、点AとC、点Bと点Cをそれぞれ結んで、ひし形OACBをつくる。
また、②のグラフ上に点Aと$x$座標が等しい点Dをとる。
このとき次の各問いに答えなさい。
問1
2点O,Bを通る直線の式を求めよ。
問2
点Cの座標を求めよ。
問3
$x$軸上に点$(3,0)$をとる。
点$(3,0)$を通り、ひし形OACBの面積を2等分する直線の式を求めよ。
問4
点Oと点Dを結んだ線分ODを1辺とする正方形をつくる。
この正方形とひし形OACBの面積の比が$25:64$であるとき、$a$の値を求めよ。
【高校受験対策】数学-関数43
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数43
Q.
右の図において、曲線アは関数$y=\frac{1}{2}x^2$のグラフである。
曲線ア上の点で$x$座標が$4$である点を$A$、$y$軸上の点で$y$座標が$10,6$である点をそれぞれ$B,C$とし、線分$OB$の中点を$D$とする。
また、線分$OA$上に点$E$をとる。ただし$O$は原点とする。
①2点$A,D$を通る直線の式を求めなさい。
②$△OAB$の面積を求めなさい。
③四角形$ABCE$の面積が$△OAB$の面積の$\frac{1}{2}$であるとき、 点$E$の座標を求めなさい。
この動画を見る
高校受験対策・関数43
Q.
右の図において、曲線アは関数$y=\frac{1}{2}x^2$のグラフである。
曲線ア上の点で$x$座標が$4$である点を$A$、$y$軸上の点で$y$座標が$10,6$である点をそれぞれ$B,C$とし、線分$OB$の中点を$D$とする。
また、線分$OA$上に点$E$をとる。ただし$O$は原点とする。
①2点$A,D$を通る直線の式を求めなさい。
②$△OAB$の面積を求めなさい。
③四角形$ABCE$の面積が$△OAB$の面積の$\frac{1}{2}$であるとき、 点$E$の座標を求めなさい。
【高校受験対策】数学-関数41
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y=\frac{1}{2}x^2$のグラフ上に2点$A$・$B$があり、点$A$の$x$座標は$-3$、点$B$は点$A$と$y$軸について対称である。
このとき次の問いに答えなさい。
問1
関数$y=\frac{1}{2}x^2$について、$x$の変域が$-3 \leqq x \leqq 4$のときの$y$の変域を求めなさい。
問2
$y$軸上に点$C$を、四角形$OBCA$がひし形となるようにとる。
このとき次の問いに答えなさい。
(1) 直線$AC$の式を求めなさい。
(2) 線分$AC$上に点$D$をとる。$△ODA$と四角形$OBCA$の面積比が$1:4$となるとき、点$D$の座標を求 めなさい。
この動画を見る
右の図のように、関数$y=\frac{1}{2}x^2$のグラフ上に2点$A$・$B$があり、点$A$の$x$座標は$-3$、点$B$は点$A$と$y$軸について対称である。
このとき次の問いに答えなさい。
問1
関数$y=\frac{1}{2}x^2$について、$x$の変域が$-3 \leqq x \leqq 4$のときの$y$の変域を求めなさい。
問2
$y$軸上に点$C$を、四角形$OBCA$がひし形となるようにとる。
このとき次の問いに答えなさい。
(1) 直線$AC$の式を求めなさい。
(2) 線分$AC$上に点$D$をとる。$△ODA$と四角形$OBCA$の面積比が$1:4$となるとき、点$D$の座標を求 めなさい。
【高校受験対策】数学-関数40
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
下の図のように、関数$y=\frac{1}{3}x^2$のグラフ上に2点$A$、$B$がある。
点Aの$x$座標は$-6$、点$B$の$x$座標は$3$であり、2点$A$、$B$を通る直線と$x$軸との交点を$C$とする。
このとき、次の間1~問6に答えなさい。
問1 点$B$の$y$座標を求めなさい。
問2 関数$y=\frac{1}{3}x^2$について、 $x$の変域が$-6 \leqq x \leqq 3$のときの$y$の変域を求めなさい。
問3 2点$A$、$B$を通る直線の式を求めなさい。
問4 点$C$の座標を求めなさい。
問5 $△OAB$の面積を求めなさい。
問6 $y=\frac{1}{3}x^2$のグラフ上に点$P$にある。$△POC$の面積が$△OAB$の面積と等しくなるような点$P$の$x$座標をすべて求めなさい。
この動画を見る
下の図のように、関数$y=\frac{1}{3}x^2$のグラフ上に2点$A$、$B$がある。
点Aの$x$座標は$-6$、点$B$の$x$座標は$3$であり、2点$A$、$B$を通る直線と$x$軸との交点を$C$とする。
このとき、次の間1~問6に答えなさい。
問1 点$B$の$y$座標を求めなさい。
問2 関数$y=\frac{1}{3}x^2$について、 $x$の変域が$-6 \leqq x \leqq 3$のときの$y$の変域を求めなさい。
問3 2点$A$、$B$を通る直線の式を求めなさい。
問4 点$C$の座標を求めなさい。
問5 $△OAB$の面積を求めなさい。
問6 $y=\frac{1}{3}x^2$のグラフ上に点$P$にある。$△POC$の面積が$△OAB$の面積と等しくなるような点$P$の$x$座標をすべて求めなさい。
【1/3】中3冬特訓10日目
単元:
#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
Q.
右の図で、点A・Bは関数$y=x^2$のグラフ上の点、点Cは関数$y=\frac{1}{4}x^2$のグラフ上の点である。また、AC・BCはそれぞれ$x$軸、$y$軸に平行である。
次の問いに答えなさい。ただし3点、A・B・Cは$x \gt 0$にあるものとする。
①点Aの座標が$(2,4)$のとき、点Bの座標を求めよ。
②AC=BCのとき、点Aの座標を求めよ。
この動画を見る
Q.
右の図で、点A・Bは関数$y=x^2$のグラフ上の点、点Cは関数$y=\frac{1}{4}x^2$のグラフ上の点である。また、AC・BCはそれぞれ$x$軸、$y$軸に平行である。
次の問いに答えなさい。ただし3点、A・B・Cは$x \gt 0$にあるものとする。
①点Aの座標が$(2,4)$のとき、点Bの座標を求めよ。
②AC=BCのとき、点Aの座標を求めよ。
【12/28】中3冬特訓4日目
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x^3+x^2-x-1$を因数分解しなさい。
➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。
③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。
④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
この動画を見る
①$x^3+x^2-x-1$を因数分解しなさい。
➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。
③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。
④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
【高校受験対策】数学-死守34
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34
①$(-8)+(-4)$
②$-\frac{5}{7}+\frac{2}{3}$
③$65a^2b \div5a$
④$\frac{18}{\sqrt{2}}-\sqrt{98}$
⑤$(x+9)^2-(x-3)(x-7)$
⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。
⑦2次方程式$6x^2-2x-1=0$を解きなさい。
⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。
④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。
⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。
⑪
Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。
⑫
右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る
高校受験対策・死守34
①$(-8)+(-4)$
②$-\frac{5}{7}+\frac{2}{3}$
③$65a^2b \div5a$
④$\frac{18}{\sqrt{2}}-\sqrt{98}$
⑤$(x+9)^2-(x-3)(x-7)$
⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。
⑦2次方程式$6x^2-2x-1=0$を解きなさい。
⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。
④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。
⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。
⑪
Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。
⑫
右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。