2次関数
【受験対策】 数学-関数③
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図で曲線は$y=x^2$のグラフです。
動点Pは原点Oからと軸上を正の方向に毎秒4の速さで移動し、
動点Qは原点OからX軸上を正の方向に毎秒2の速さで移動します。
①動点P、Qが同時に出発して2秒後にできる直線PQの式は?
②①でもとめた直線PQと曲線との2つの交点において、X座標が負の点をR もう一方をSとするとき、2点R、Sの座標は?
③線分RSの長さは?
※図は動画内参照
この動画を見る
右の図で曲線は$y=x^2$のグラフです。
動点Pは原点Oからと軸上を正の方向に毎秒4の速さで移動し、
動点Qは原点OからX軸上を正の方向に毎秒2の速さで移動します。
①動点P、Qが同時に出発して2秒後にできる直線PQの式は?
②①でもとめた直線PQと曲線との2つの交点において、X座標が負の点をR もう一方をSとするとき、2点R、Sの座標は?
③線分RSの長さは?
※図は動画内参照
【受験対策】 数学-規則性②
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は、1番目では16本、2番目では36本 3番目では64本である。
①4番目の図形をつくるには何本のマッチ棒が必要?
②n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照
この動画を見る
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は、1番目では16本、2番目では36本 3番目では64本である。
①4番目の図形をつくるには何本のマッチ棒が必要?
②n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照
【受験対策】 数学-規則性①
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目、3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は1番目では4本、2番目では12本、 3番目では24本である。
①5番目の図形をつくるには何本のマッチ棒が必要?
②14番目の図形をつくるには何本のマッチ棒が必要?
③n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照
この動画を見る
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目、3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は1番目では4本、2番目では12本、 3番目では24本である。
①5番目の図形をつくるには何本のマッチ棒が必要?
②14番目の図形をつくるには何本のマッチ棒が必要?
③n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照
【受験対策】 数学-関数②
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図で、曲線は関数$y=x^2$のグラフです。
曲線上の 点A(-2.4)を通り、傾きが-1、1の直線と曲線との交点、をそれぞれB、Cとします。
点P、Qは点Aを同時に出発して、点Pは線分AB上を、点Qは線分AC上を、それぞれ一定の速さで進み、 点Pは点Bに、点Qは点Cに同時に到着しました。
①点Pがy軸上にきたときの点Qの座標は?
②点P、Qが同時に到着した後、点P、Qは線分BC上をそれぞれの速さを変えずに進み、線分BC上の点Rで出会いました。
点Rの座標は?
③△ABRの面積を求めよう。
ただし、座標軸の単位の長さを1cmとします。
※図は動画内参照
この動画を見る
右の図で、曲線は関数$y=x^2$のグラフです。
曲線上の 点A(-2.4)を通り、傾きが-1、1の直線と曲線との交点、をそれぞれB、Cとします。
点P、Qは点Aを同時に出発して、点Pは線分AB上を、点Qは線分AC上を、それぞれ一定の速さで進み、 点Pは点Bに、点Qは点Cに同時に到着しました。
①点Pがy軸上にきたときの点Qの座標は?
②点P、Qが同時に到着した後、点P、Qは線分BC上をそれぞれの速さを変えずに進み、線分BC上の点Rで出会いました。
点Rの座標は?
③△ABRの面積を求めよう。
ただし、座標軸の単位の長さを1cmとします。
※図は動画内参照
【数学】中3-42 二次関数の利用④(一次関数との交点編)
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎右の図のように、$y=x^2$と$y=x+6$が2点A,Bで交わっている。
①点Aと点Bの座標は?
②△AODの面積は?
③△AOBの面積は?
※図は動画内参照
この動画を見る
◎右の図のように、$y=x^2$と$y=x+6$が2点A,Bで交わっている。
①点Aと点Bの座標は?
②△AODの面積は?
③△AOBの面積は?
※図は動画内参照
【数学】中3-41 二次関数の利用③(一次関数とのコラボ編)
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎右の図のように、$y=ax^2$のグラフに、2点A,Bがある。
点Aは(-4,8)で、点Bのx座標は2である。
①aの値は?
②点Bの座標は?
③2点A,Bを通る直線の式は?
④△AOBの面積は?
⑤直線A,B場を動く点Pがある。
直線OPが△AOBの面積を2等分するとき、点Pの座標は?
※図は動画内参照
この動画を見る
◎右の図のように、$y=ax^2$のグラフに、2点A,Bがある。
点Aは(-4,8)で、点Bのx座標は2である。
①aの値は?
②点Bの座標は?
③2点A,Bを通る直線の式は?
④△AOBの面積は?
⑤直線A,B場を動く点Pがある。
直線OPが△AOBの面積を2等分するとき、点Pの座標は?
※図は動画内参照
【数学】中3-40 二次関数の利用②(動点編)
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎右の図のような、AB=4cm、AD=8cmの長方形がある。
点PはAB上を、秒速1cmの速さでAからBまで動き、 点QはAD上を秒速2cmの速さで AからDまで動く。
2点P,Qが同時に,Aを出発してからx秒後の△APQの面積をy$cm^2$とする。
① xとyの関係を式で表すと?
② xの変域は?
③ yの変域は?
④ ①の式をグラフに書くと?
(通る座標を確認してね!)
※図は動画内参照
この動画を見る
◎右の図のような、AB=4cm、AD=8cmの長方形がある。
点PはAB上を、秒速1cmの速さでAからBまで動き、 点QはAD上を秒速2cmの速さで AからDまで動く。
2点P,Qが同時に,Aを出発してからx秒後の△APQの面積をy$cm^2$とする。
① xとyの関係を式で表すと?
② xの変域は?
③ yの変域は?
④ ①の式をグラフに書くと?
(通る座標を確認してね!)
※図は動画内参照
【数学】中3-39 二次関数の利用①(平均の速さ編)
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎物を落下させるとき、落下しはじめてからx秒間に落下する距離
をymとすると、yはxの2乗に比例する。
落下しはじめてから2秒間で20m落下したとき、次の①~④を解こう!
①xとyの関係を式に表すと?
②落下しはじめてから6秒間 では何m落下する?
③90mのところから落下すると、地上に落ちるまでに何秒かかる?
④落下しはじめてから、2秒後から5秒後までの 平均の速さは?
この動画を見る
◎物を落下させるとき、落下しはじめてからx秒間に落下する距離
をymとすると、yはxの2乗に比例する。
落下しはじめてから2秒間で20m落下したとき、次の①~④を解こう!
①xとyの関係を式に表すと?
②落下しはじめてから6秒間 では何m落下する?
③90mのところから落下すると、地上に落ちるまでに何秒かかる?
④落下しはじめてから、2秒後から5秒後までの 平均の速さは?
【数学】中3-38 二次関数の変化の割合
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$y=ax^2$について、xの値がbからcまで増加したときの変化の割合は①____で求めよう!
②$y=3x^2$について、xの値が-2から5 まで増加するときの変化の割合は?
③$-\displaystyle \frac{1}{2}x^2$について、xの値が3から7 まで増加するときの変化の割合は?
④$-\displaystyle \frac{1}{3}x^2$について、Xの値がtから $t +1$まで増加するときの変化の割合が -5のとき、tの値はいくつ?
⑤$y=ax^2$について、xの値が-5から3 まで増加するときの変化の割合が、 $y=-3x+6$の変化の割合と等しくなった。
aの値はいくつ?
この動画を見る
$y=ax^2$について、xの値がbからcまで増加したときの変化の割合は①____で求めよう!
②$y=3x^2$について、xの値が-2から5 まで増加するときの変化の割合は?
③$-\displaystyle \frac{1}{2}x^2$について、xの値が3から7 まで増加するときの変化の割合は?
④$-\displaystyle \frac{1}{3}x^2$について、Xの値がtから $t +1$まで増加するときの変化の割合が -5のとき、tの値はいくつ?
⑤$y=ax^2$について、xの値が-5から3 まで増加するときの変化の割合が、 $y=-3x+6$の変化の割合と等しくなった。
aの値はいくつ?
【数学】中3-37 二次関数の変域
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
変域をだすなら①____を書こう!
◎yの変域をもとめよう!(②~④) )のとき。
②$y=3x^2(1 \leqq x \leqq 3)$のとき。
③$y=3x^2(-2\leqq x \leqq 1)$のとき。
④$y=-\displaystyle \frac{1}{2}x^2(-1\leqq x \leqq4)$のとき。
⑤$y=ax^2$について、xの変域が$-3 \leqq x \leqq 1$のとき、
yの変域は$0 \leqq y \leqq 18$です。
aの値は?
この動画を見る
変域をだすなら①____を書こう!
◎yの変域をもとめよう!(②~④) )のとき。
②$y=3x^2(1 \leqq x \leqq 3)$のとき。
③$y=3x^2(-2\leqq x \leqq 1)$のとき。
④$y=-\displaystyle \frac{1}{2}x^2(-1\leqq x \leqq4)$のとき。
⑤$y=ax^2$について、xの変域が$-3 \leqq x \leqq 1$のとき、
yの変域は$0 \leqq y \leqq 18$です。
aの値は?
【数学】中3-36 二次関数のグラフ②
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\boxed{A}~\boxed{D}$の関数からあてはまるものをすべて書こう!
$\boxed{A} y=3x^2$
$\boxed{B} y=-\displaystyle \frac{1}{5}x^2$
$\boxed{C} y=-x^2$
$\boxed{D} y=\displaystyle \frac{2}{3}x^2$
①グラフが下に開いているのは?
②グラフの開き方が一番大きいのは?
③グラフが$y=x^2$とx軸を対象の軸として線対称になっているのはどれ?
④$x=0$のとき、yが最小になるのは?
⑤$x<0$の範囲で、xの値が増加するとyの値が減少するのは?
⑥$\boxed{ア}~\boxed{エ}$の中で、$\boxed{C}$と$\boxed{D}$のグラフはどれ?
$\boxed{C}$→ 、$\boxed{D}$→
※グラフは動画内参照
この動画を見る
$\boxed{A}~\boxed{D}$の関数からあてはまるものをすべて書こう!
$\boxed{A} y=3x^2$
$\boxed{B} y=-\displaystyle \frac{1}{5}x^2$
$\boxed{C} y=-x^2$
$\boxed{D} y=\displaystyle \frac{2}{3}x^2$
①グラフが下に開いているのは?
②グラフの開き方が一番大きいのは?
③グラフが$y=x^2$とx軸を対象の軸として線対称になっているのはどれ?
④$x=0$のとき、yが最小になるのは?
⑤$x<0$の範囲で、xの値が増加するとyの値が減少するのは?
⑥$\boxed{ア}~\boxed{エ}$の中で、$\boxed{C}$と$\boxed{D}$のグラフはどれ?
$\boxed{C}$→ 、$\boxed{D}$→
※グラフは動画内参照
【数学】中3-35 二次関数のグラフ①
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$y=ax^2$のグラフは、 必ず①____を通る。
そしてaが____だと上カーブ!
aが③____だと下カーブ!!
◎グラフを書こう!
④$y=\displaystyle \frac{1}{4}x^2$
⑤$y=-x^2$
⑥グラフの式をもとめよう。
※グラフは動画内参照
この動画を見る
$y=ax^2$のグラフは、 必ず①____を通る。
そしてaが____だと上カーブ!
aが③____だと下カーブ!!
◎グラフを書こう!
④$y=\displaystyle \frac{1}{4}x^2$
⑤$y=-x^2$
⑥グラフの式をもとめよう。
※グラフは動画内参照
【数学】中3-33 二次関数って?
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
y=①____で表されるとき、
『yはXの②____に③____する』といって、
このときのaを④____という。
◎xとyの関係を式に表そう!
⑤ 1辺がxcmの正方形の面積y$cm^2$。
⑥ 1辺がxcmの立方体の体積y$cm^3$。
⑦ 1辺がxcmの立方体の表面積y$cm^2$。
⑧底辺xcm、高さ8cmの 三角形の面積y$cm^2$。
⑨半径xcmの円 の面積y$cm^2$。
⑩底面が1辺2xcmの正方形、高さが6cm の正四角錐の体積y$cm^2$。
⑪ ⑤~⑩のうち、yがxの2乗に比例するのは?
この動画を見る
y=①____で表されるとき、
『yはXの②____に③____する』といって、
このときのaを④____という。
◎xとyの関係を式に表そう!
⑤ 1辺がxcmの正方形の面積y$cm^2$。
⑥ 1辺がxcmの立方体の体積y$cm^3$。
⑦ 1辺がxcmの立方体の表面積y$cm^2$。
⑧底辺xcm、高さ8cmの 三角形の面積y$cm^2$。
⑨半径xcmの円 の面積y$cm^2$。
⑩底面が1辺2xcmの正方形、高さが6cm の正四角錐の体積y$cm^2$。
⑪ ⑤~⑩のうち、yがxの2乗に比例するのは?
【数学】中3-34 二次関数の式をもとめよう
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
二次関数といえば、y=①____
◎xとyの関係を式に表そう。
②yはxの2乗に比例し、x=-2のときy=24。
③yはxの2乗に比例し、x=-4のとき、y=-8。
◎次の値をだそう。
④yはxの2乗に比例し、x=-3のときy=-4である。
x=2のとき、yの値は?
⑤yはxの2乗に比例し、x=2のときy=-3である。
y=12のときxの値は?
この動画を見る
二次関数といえば、y=①____
◎xとyの関係を式に表そう。
②yはxの2乗に比例し、x=-2のときy=24。
③yはxの2乗に比例し、x=-4のとき、y=-8。
◎次の値をだそう。
④yはxの2乗に比例し、x=-3のときy=-4である。
x=2のとき、yの値は?
⑤yはxの2乗に比例し、x=2のときy=-3である。
y=12のときxの値は?
【For you 動画-5】 中3-二次関数
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
4点、$A、B、D、E$は直線上にある。
$AB=BC=6cm$の直角二等辺三角形$ABC$が毎秒$1cm$の速さで上を右に動く。
点$A$が点$D$に重なった瞬間を○秒とする。 このとき、$x$秒後の$2$つの図形が重なる部分の面積を$ycm²$とする。
次の場合について、$y$を$x$の式で表そう!
①$0 \leqq x \leqq 4$
②$4 \leqq x \leqq 6$
③$6 \leqq x \leqq 8$
④グラフを書こう!
※図は動画内参照
この動画を見る
4点、$A、B、D、E$は直線上にある。
$AB=BC=6cm$の直角二等辺三角形$ABC$が毎秒$1cm$の速さで上を右に動く。
点$A$が点$D$に重なった瞬間を○秒とする。 このとき、$x$秒後の$2$つの図形が重なる部分の面積を$ycm²$とする。
次の場合について、$y$を$x$の式で表そう!
①$0 \leqq x \leqq 4$
②$4 \leqq x \leqq 6$
③$6 \leqq x \leqq 8$
④グラフを書こう!
※図は動画内参照
【For you 動画-4(追加)】 中3数学-別解答バージョン
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【別解】
$P(x、y)$とおく。
$P(x、y)$、$(4,0)$の中点が$(-4,8)$
$\displaystyle \frac{x+4}{2}=-4 → x+4=-8$
$x=-12$
$\displaystyle \frac{y+\xcancel{0}}{2}=8 → y=16$
※図は動画内参照
この動画を見る
【別解】
$P(x、y)$とおく。
$P(x、y)$、$(4,0)$の中点が$(-4,8)$
$\displaystyle \frac{x+4}{2}=-4 → x+4=-8$
$x=-12$
$\displaystyle \frac{y+\xcancel{0}}{2}=8 → y=16$
※図は動画内参照
【For you動画-4】 中3数学-二次関数
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
問いに答えよ。
①$a.b(b \lt 0)$の値は?
②直線$AB$の式は?
③図の二次関数について、 $X$の変域が$-2 \leqq x \leqq 4$のときその変域は?
④$X=t$の直線をひき、交点を図のように$P.Q$とする。
$PQ=8$となるしをだそう!
ただし-3 \leqq t \leqq 1とする。
⑤点$P$は直線$AB$上の点。
四角形$ACOB$と$\triangle ACP$の面積
が等しくなる点$P$の座標を$2$つだそう!
※図は動画内参照
この動画を見る
問いに答えよ。
①$a.b(b \lt 0)$の値は?
②直線$AB$の式は?
③図の二次関数について、 $X$の変域が$-2 \leqq x \leqq 4$のときその変域は?
④$X=t$の直線をひき、交点を図のように$P.Q$とする。
$PQ=8$となるしをだそう!
ただし-3 \leqq t \leqq 1とする。
⑤点$P$は直線$AB$上の点。
四角形$ACOB$と$\triangle ACP$の面積
が等しくなる点$P$の座標を$2$つだそう!
※図は動画内参照
【中2 数学】 2-③⑨ 一次関数の利用③ ・ 動点編
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
中2 数学 一次関数の利用③ ・ 動点編
以下の問に答えよ
毎秒1cmで A → B → C → D (動点 P ) 、△ ADP が y ㎠
① 動点 P が AB 上
② 動点 P が BC 上
③ 動点 P が CD 上
※図は動画内参照
この動画を見る
中2 数学 一次関数の利用③ ・ 動点編
以下の問に答えよ
毎秒1cmで A → B → C → D (動点 P ) 、△ ADP が y ㎠
① 動点 P が AB 上
② 動点 P が BC 上
③ 動点 P が CD 上
※図は動画内参照