数学(中学生)
数学(中学生)
数学を数楽にして解く 2通りで解説 専修大学松戸

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{14}(\sqrt{28}+4)(\sqrt{14} - \sqrt 8)$
専修大学松戸高等学校
この動画を見る
$\sqrt{14}(\sqrt{28}+4)(\sqrt{14} - \sqrt 8)$
専修大学松戸高等学校
二次関数:日本大学第三高等学校~全国入試問題解法

単元:
#数学(中学生)#高校入試過去問(数学)#日本大学第三高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 日本大学第三高等学校
放物線$y = ax^2 (a \gt 0)$ 上に$2$点$A$と$B$。
点$A:(-2,8)$
点$B:x$座標が$3$
点$C:$直線$AB$と$y$軸の交点
(1)$a$の値を求めなさい。
(2)直線$AB$の式を求めなさい。
この動画を見る
入試問題 日本大学第三高等学校
放物線$y = ax^2 (a \gt 0)$ 上に$2$点$A$と$B$。
点$A:(-2,8)$
点$B:x$座標が$3$
点$C:$直線$AB$と$y$軸の交点
(1)$a$の値を求めなさい。
(2)直線$AB$の式を求めなさい。
【基礎力、秒殺、先見性】計算:國學院大學久我山高等学校~全部入試問題

単元:
#数学(中学生)#高校入試過去問(数学)#國學院大學久我山高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 國學院大學久我山高等学校
次の▬を適当にうめなさい。
$2-2 \div 2\div2 \times 2^2 +2=$▬
$\displaystyle \frac{2x-7}{6}-\displaystyle \frac{2x+1}{3}+\displaystyle \frac{4x-1}{2}=$▬
この動画を見る
入試問題 國學院大學久我山高等学校
次の▬を適当にうめなさい。
$2-2 \div 2\div2 \times 2^2 +2=$▬
$\displaystyle \frac{2x-7}{6}-\displaystyle \frac{2x+1}{3}+\displaystyle \frac{4x-1}{2}=$▬
【高校受験対策/数学】死守63

単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63
①
下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照
➁
右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。
③
1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。
④
ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。
⑤
下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る
高校受験対策・死守63
①
下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照
➁
右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。
③
1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。
④
ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。
⑤
下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
【高校受験対策/数学】図形-41

単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形41
Q.
右の図において、点$A,B,C,D$は円$O$の周上にあり、点$E$は直線$AB$上の点で、$AD /\!/ EC$である。
このとき次の各問に答えなさい。
①三角形$AEC$と三角形$DCB$が相似であることを証明しなさい。
②$AE=4cm$、$BC=5cm$、$EC=6cm$、$\angle ACD=\angle CBD$とする。
直線$AB$と直線$CD$の交点を$F$としたとき、$FD$の長さを求めなさい。
この動画を見る
高校受験対策・図形41
Q.
右の図において、点$A,B,C,D$は円$O$の周上にあり、点$E$は直線$AB$上の点で、$AD /\!/ EC$である。
このとき次の各問に答えなさい。
①三角形$AEC$と三角形$DCB$が相似であることを証明しなさい。
②$AE=4cm$、$BC=5cm$、$EC=6cm$、$\angle ACD=\angle CBD$とする。
直線$AB$と直線$CD$の交点を$F$としたとき、$FD$の長さを求めなさい。
【この考え方が高2の内容に繋がる!】関数:江戸川学園取手高等学校~全部入試問題

単元:
#数学(中学生)#高校入試過去問(数学)#江戸川学園取手高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 江戸川学園取手高等学校
$y-5$は$x-2$の2乗に 比例する関数であり、
$x =1$のとき$y =7$である。
$x$が$1$から$4$まで増加するときの変化の割合を求めなさい。
この動画を見る
入試問題 江戸川学園取手高等学校
$y-5$は$x-2$の2乗に 比例する関数であり、
$x =1$のとき$y =7$である。
$x$が$1$から$4$まで増加するときの変化の割合を求めなさい。
【裏技】知らないと損

【高校受験対策/数学】死守-90

単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#平方根#2次方程式#確率#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守90
①$6-5-(-2)$を計算しなさい。
②$a=4$のとき、$6a^2÷3a$の値を求めなさい。
③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。
④方程式$x^2+5x-6=0$を解きなさい。
⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。
⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。
⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。
ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$
⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
この動画を見る
高校受験対策・死守90
①$6-5-(-2)$を計算しなさい。
②$a=4$のとき、$6a^2÷3a$の値を求めなさい。
③$\sqrt{2}×\sqrt{6}×\frac{9}{\sqrt{3}}$を計算しなさい。
④方程式$x^2+5x-6=0$を解きなさい。
⑤2点$A(1,7)$、$B(3,2)$の間の距離を求めなさい。
⑥$4 \lt \sqrt{a}\lt \frac{13}{3}$に当てはまる整数$a$の値をすべて求めなさい。
⑦右の図の①~④の放物線は、下のア~エの関数のグラフです。
①と④はそれぞれどの関数のグラフですか。
ア~エの中から選びその記号をそれぞれ書きなさい。
ア $y=x^2$
イ $y=\frac{1}{3}x^2$
ウ $y=2x^2$
エ $y=-\frac{1}{2}x^2$
⑧数字を書いた4枚のカード①、②、③、④が袋Aの中に、
数字を書いた3枚のカード①、②、③が袋Bの中に入っています。
それぞれの袋からカードを1枚ずつ取り出すとき、
その2枚のカードに書いてある数の和が6以上になる確率を求めなさい。
【高校受験対策/数学】死守-89

単元:
#数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#確率#2次関数#円#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守89
①$-3-(-7)$を計算しなさい。
②$8-(-3)^2$を計算しなさい。
③$(-9ab^2)×2a÷(-3ab)$を計算しなさい。
④$(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})$を計算しなさい。
⑤$x^2-3x-18$を因数分解しなさい。
⑥絶対値が$4$より小さい整数の個数を求めなさい。
⑦右の図のア~ウは、関数$y=-2x^2、y=x^2$および$y=\frac{1}{2}x^2$のグラフを同じ座標軸を使ってかいたものです。
$y=x^2$のグラフをア~ウから一つ選びなさい。
⑧右の図のような、半径$5cm$、中心角$90°$のおうぎ形$OAB$があります。
このおうぎ形を直線$OA$を回転の軸として1回転させてできる立体の体積を求めなさい。
⑨大小2つのさいころを同時に投げるとき、出る目の数の和がちょうど$5$以下となる確率を求めなさい。
ただしさいころの$1$から$6$までの目の出方は同様に確からしいものとします。
この動画を見る
高校受験対策・死守89
①$-3-(-7)$を計算しなさい。
②$8-(-3)^2$を計算しなさい。
③$(-9ab^2)×2a÷(-3ab)$を計算しなさい。
④$(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})$を計算しなさい。
⑤$x^2-3x-18$を因数分解しなさい。
⑥絶対値が$4$より小さい整数の個数を求めなさい。
⑦右の図のア~ウは、関数$y=-2x^2、y=x^2$および$y=\frac{1}{2}x^2$のグラフを同じ座標軸を使ってかいたものです。
$y=x^2$のグラフをア~ウから一つ選びなさい。
⑧右の図のような、半径$5cm$、中心角$90°$のおうぎ形$OAB$があります。
このおうぎ形を直線$OA$を回転の軸として1回転させてできる立体の体積を求めなさい。
⑨大小2つのさいころを同時に投げるとき、出る目の数の和がちょうど$5$以下となる確率を求めなさい。
ただしさいころの$1$から$6$までの目の出方は同様に確からしいものとします。
平方根 小数部分 成城学園

単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$
成城学園高等学校
この動画を見る
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$
成城学園高等学校
【出題されてもひるまないための3分間!】文字式:愛光高等学校~全国入試問題解法

単元:
#数学(中学生)#高校入試過去問(数学)#愛光高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 愛光高等学校
▬に適する数式を記入せよ。
$\displaystyle \frac{15}{7}a^12 \times (-\displaystyle \frac{14}{5a^2}) \div (-3a^2)-\displaystyle \frac{7}{15}a^2 \div \displaystyle \frac{21}{40}a=$▬
この動画を見る
入試問題 愛光高等学校
▬に適する数式を記入せよ。
$\displaystyle \frac{15}{7}a^12 \times (-\displaystyle \frac{14}{5a^2}) \div (-3a^2)-\displaystyle \frac{7}{15}a^2 \div \displaystyle \frac{21}{40}a=$▬
おすすめの解き方

【高校受験対策/数学】関数-57

単元:
#数学(中学生)#中2数学#1次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数57
Q.
図1のような、$AB=10cm$、$AD=3cm$の長方形$ABCD$がある。
点$P$は$A$から、点$Q$は$D$から同時に動き出し、
ともに毎秒$1cm$の速さで点$P$は辺$AB$上を、点$Q$は辺$DC$上を繰り返し往復する。
2点$P,Q$が動き出してから、$x$秒後の$\triangle APQ$の面積を$y cm^2$とする。
ただし点$P$が$A$にあるとき、$y=0$とする。
このとき次の各問いに答えなさい。
①2点$P,Q$が動き出してから$6$秒後の$\triangle APQ$の面積を求めなさい。
②図2は、$x$と$y$の関係を表したグラフの一部である。
2点$P,Q$が 動き出して$10$秒後から$20$秒後までの$x$と$y$の関係を式で表しなさい。
③点$R$は$A$に、点$S$は$D$にあり、それぞれ静止している。
2点$P,Q$が動き出してから$10$秒後に、2点$R,S$は動き出し、ともに毎秒$0.5cm$の速さで点$R$は辺$AB$上を、点$S$は辺$DC$上を2点$P,Q$と同様に繰り返し往復する。
このとき2点$P,Q$が動き出してから$t$秒後に$\triangle APQ$の面積と四角形$BCSR$の面積が等しくなった。
このような$t$の値のうち、小さいほうから$3$番目の値を求めなさい。
この動画を見る
高校受験対策・関数57
Q.
図1のような、$AB=10cm$、$AD=3cm$の長方形$ABCD$がある。
点$P$は$A$から、点$Q$は$D$から同時に動き出し、
ともに毎秒$1cm$の速さで点$P$は辺$AB$上を、点$Q$は辺$DC$上を繰り返し往復する。
2点$P,Q$が動き出してから、$x$秒後の$\triangle APQ$の面積を$y cm^2$とする。
ただし点$P$が$A$にあるとき、$y=0$とする。
このとき次の各問いに答えなさい。
①2点$P,Q$が動き出してから$6$秒後の$\triangle APQ$の面積を求めなさい。
②図2は、$x$と$y$の関係を表したグラフの一部である。
2点$P,Q$が 動き出して$10$秒後から$20$秒後までの$x$と$y$の関係を式で表しなさい。
③点$R$は$A$に、点$S$は$D$にあり、それぞれ静止している。
2点$P,Q$が動き出してから$10$秒後に、2点$R,S$は動き出し、ともに毎秒$0.5cm$の速さで点$R$は辺$AB$上を、点$S$は辺$DC$上を2点$P,Q$と同様に繰り返し往復する。
このとき2点$P,Q$が動き出してから$t$秒後に$\triangle APQ$の面積と四角形$BCSR$の面積が等しくなった。
このような$t$の値のうち、小さいほうから$3$番目の値を求めなさい。
【1分で理解!3分で完答!】関数:近畿大学附属高等学校~全国入試問題解法

単元:
#数学(中学生)#高校入試過去問(数学)#近畿大学付属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 近畿大学附属高等学校
a、bの値を求めよ。
$y=\displaystyle \frac{a}{x}$
↓
$2 \leqq x \leqq b$のとき、
$3 \leqq y \leqq b+4$
この動画を見る
入試問題 近畿大学附属高等学校
a、bの値を求めよ。
$y=\displaystyle \frac{a}{x}$
↓
$2 \leqq x \leqq b$のとき、
$3 \leqq y \leqq b+4$
【中学数学】相対度数をどこよりも丁寧に【中1数学】

相似より〇〇を見つける方が難しい 大阪星光学院(改)

単元:
#数学(中学生)#中2数学#中3数学#相似な図形#三角形と四角形#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
FD=?
*図は動画内参照
大阪星光学院高等学校
この動画を見る
FD=?
*図は動画内参照
大阪星光学院高等学校
【高校受験対策/数学】死守-88

単元:
#数学(中学生)#中1数学#正の数・負の数#平方根#比例・反比例#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守88
①方程式$x^2+8x+12=0$を解きなさい。
②次のア~エの数の中で絶対値が最も大きいものを1つ選び、記号で答えなさい。
ア $2$
イ $\sqrt{3}$
ウ $-\frac{7}{3}$
エ $0$
③100gあたり$a$円の牛肉を300gと、100gあたり$b$円の豚肉を500g買ったときの代金の合計が1685円だった。
この数量の関係を等式で表しなさい。
ただし、すべての金額は消費税を含んでいるものとする。
④$y$は$x$に反比例し、$x=-4$のとき$y=2$である。
$x$と$y$の関係を式に表しなさい。
⑤図1のような平行四辺形$ABCD$において、
辺$BC$に点$E$、辺$AD$上に点$F$を、$AE=EF$、$\angle AEF=30°$となるようにとる。
$\angle x$の大きさを求めなさい。
⑥次のア~ウの四角形$ABCD$のうち、点$A,B,C,D$が1つの円周上にあるものを1つ選び、記号で答えなさい。
この動画を見る
高校受験対策・死守88
①方程式$x^2+8x+12=0$を解きなさい。
②次のア~エの数の中で絶対値が最も大きいものを1つ選び、記号で答えなさい。
ア $2$
イ $\sqrt{3}$
ウ $-\frac{7}{3}$
エ $0$
③100gあたり$a$円の牛肉を300gと、100gあたり$b$円の豚肉を500g買ったときの代金の合計が1685円だった。
この数量の関係を等式で表しなさい。
ただし、すべての金額は消費税を含んでいるものとする。
④$y$は$x$に反比例し、$x=-4$のとき$y=2$である。
$x$と$y$の関係を式に表しなさい。
⑤図1のような平行四辺形$ABCD$において、
辺$BC$に点$E$、辺$AD$上に点$F$を、$AE=EF$、$\angle AEF=30°$となるようにとる。
$\angle x$の大きさを求めなさい。
⑥次のア~ウの四角形$ABCD$のうち、点$A,B,C,D$が1つの円周上にあるものを1つ選び、記号で答えなさい。
数学を数楽にして解く

【数学】立体図形:サンタの帽子の体積を求めよう! ~クリスマススペシャル~
1271を素因数分解 大阪教育大附属天王寺

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$36^2=1296$
$1271$を素数の積で表せ
大阪教育大学附属高等学校天王寺校舎
この動画を見る
$36^2=1296$
$1271$を素数の積で表せ
大阪教育大学附属高等学校天王寺校舎
高校受験でも軌跡の問題あります。滝高校

単元:
#数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
正方形ABCDにおいて点Qが頂点B→C→D→Aの順に辺上を動くとき
PQの中点が描く図形の長さは?
*図は動画内参照
滝高等学校
この動画を見る
正方形ABCDにおいて点Qが頂点B→C→D→Aの順に辺上を動くとき
PQの中点が描く図形の長さは?
*図は動画内参照
滝高等学校
【数学】平方根:因数分解できそうなのに・・・!

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x+y=\sqrt5+1,xy=\sqrt5-1$の時の$x^2+xy+y^2$の値を求めよ【完成ノート】【因数分解】
この動画を見る
$x+y=\sqrt5+1,xy=\sqrt5-1$の時の$x^2+xy+y^2$の値を求めよ【完成ノート】【因数分解】
【まず、2分!手段は、いろいろ身に付けよう!】因数分解:江戸川学園取手高等学校~全国入試問題解法

単元:
#数学(中学生)#高校入試過去問(数学)#江戸川学園取手高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 江戸川学園取手高等学校
因数分解をしなさい。
$x^2-6xy+9y^2+3x-9y+2$
この動画を見る
入試問題 江戸川学園取手高等学校
因数分解をしなさい。
$x^2-6xy+9y^2+3x-9y+2$
高校入試だけど二重根号

単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=\sqrt{6+\sqrt{11}} , y=\sqrt{6-\sqrt{11}} $
$(x+y)^2 = ?$
慶應義塾高等学校
この動画を見る
$x=\sqrt{6+\sqrt{11}} , y=\sqrt{6-\sqrt{11}} $
$(x+y)^2 = ?$
慶應義塾高等学校
=と≡の違いわかる?

【数学】平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方

あなたにとって難問かもしれません。巣鴨

こんな解き方あり!?

気持ち良く解こう!! 成城学園

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{54}(3a+3b)(9a-9b)(2a^2+2b^2)$
成城学園高等学校
この動画を見る
$\frac{1}{54}(3a+3b)(9a-9b)(2a^2+2b^2)$
成城学園高等学校
良問!!立体図形 角が最大になるとき

単元:
#数学(中学生)#立体図形#立体切断#立体図形その他#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
正四面体
$\angle MPN$が最大のとき
CP=?
*図は動画内参照
光塩女子学院高等科
この動画を見る
正四面体
$\angle MPN$が最大のとき
CP=?
*図は動画内参照
光塩女子学院高等科
