中高教材
中高教材
【高校物理】斜面上のばね振り子【毎週土曜日16時更新!】

単元:
#物理#力学#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、水平面との傾きがθのなめらかな面上に、ばね定数kの軽いばねを置く。ばねの一端を斜面上に固定し、他端に質量mのおもりをつけて、斜面上で単振動をさせる。重力加速度の大きさをgとして、次の各問に答えよ。
(1) 単振動の中心は、ばねの伸びがいくらになったところか。
(2) 単振動の周期を求めよ。
この動画を見る
図のように、水平面との傾きがθのなめらかな面上に、ばね定数kの軽いばねを置く。ばねの一端を斜面上に固定し、他端に質量mのおもりをつけて、斜面上で単振動をさせる。重力加速度の大きさをgとして、次の各問に答えよ。
(1) 単振動の中心は、ばねの伸びがいくらになったところか。
(2) 単振動の周期を求めよ。
【数Ⅲ】【積分とその応用】y軸周りの回転体の体積2 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
この動画を見る
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
【数Ⅲ】【積分とその応用】y軸周りの回転体の体積1 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=x^2$, $x+\sqrt{y}=2$, $x=0$
(2)$y=x^2-4x+5$, $y=2x$
この動画を見る
次の曲線や直線で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=x^2$, $x+\sqrt{y}=2$, $x=0$
(2)$y=x^2-4x+5$, $y=2x$
【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
$△ABC$の辺$AB$,$BC$,$CA$を2:1に内分する点を、それぞれ$A_1$,$B1_1$,$C_1$とする。更に、$△A_1B_1C_1$の辺$A_1B_1$,$B_1C_1$を2:1に内分する点を、それぞれ$A_2$,$B_2$とする。このとき、$A_2B_2//AB$であることを示せ。
問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。
問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。
問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。$\overrightarrow{ AB }=\overrightarrow{ b }$,$\overrightarrow{ AC }=\overrightarrow{ c }$とするとき、$\overrightarrow{ AP }$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ。
この動画を見る
問題1
$△ABC$の辺$AB$,$BC$,$CA$を2:1に内分する点を、それぞれ$A_1$,$B1_1$,$C_1$とする。更に、$△A_1B_1C_1$の辺$A_1B_1$,$B_1C_1$を2:1に内分する点を、それぞれ$A_2$,$B_2$とする。このとき、$A_2B_2//AB$であることを示せ。
問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。
問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。
問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。$\overrightarrow{ AB }=\overrightarrow{ b }$,$\overrightarrow{ AC }=\overrightarrow{ c }$とするとき、$\overrightarrow{ AP }$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ。
【数Ⅲ】【積分とその応用】x軸周りの回転体の体積 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1) $y=\dfrac{1}{\sqrt{1+x^2}}$, $y=\dfrac{1}{\sqrt{2}}$
(2)$y=x^2+3x-1$, $y=-x^2-x-1$
この動画を見る
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1) $y=\dfrac{1}{\sqrt{1+x^2}}$, $y=\dfrac{1}{\sqrt{2}}$
(2)$y=x^2+3x-1$, $y=-x^2-x-1$
【数Ⅲ】【積分とその応用】断面積の図形の体積2 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
この動画を見る
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
【数Ⅲ】【積分とその応用】断面積の図形の体積1 ※問題文は概要欄

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。
この動画を見る
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。
【高校物理】単振動とエネルギー【毎週土曜日16時更新!】

単元:
#物理#力学#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
質量5.0kgの物体が、周期4.0s、振幅2.0mの単振動をしている。この単振動について、次の各間に答えよ。
(1)角振動数は何 rad/s か。
(2)振動数は何 Hzか。
(3)変位が1.0mの点で、物体が受ける復元力の大きさは何か。
(4)物体が受ける復元力の大きさの最大値は何Nか。
(5)単振動のエネルギーは何Jか。
この動画を見る
質量5.0kgの物体が、周期4.0s、振幅2.0mの単振動をしている。この単振動について、次の各間に答えよ。
(1)角振動数は何 rad/s か。
(2)振動数は何 Hzか。
(3)変位が1.0mの点で、物体が受ける復元力の大きさは何か。
(4)物体が受ける復元力の大きさの最大値は何Nか。
(5)単振動のエネルギーは何Jか。
【高校化学】けん化価とヨウ素価【毎週土曜日16時更新!】

単元:
#化学#有機#理科(高校生)
教材:
#中高教材#セミナー化学基礎・化学
指導講師:
理数個別チャンネル
問題文全文(内容文):
油脂1gのけん化に要する水酸化カリウムの質量[mg]をけん化価といい,油脂 100g に付加するヨウ素の質量[g] をヨウ素価という。
次の各問いに答えよ。 ただし, KOH の式量を56, I2 の分子量を254とする。
(1) 油脂Xのけん化価は190であった。油脂Xの分子量を有効数字3桁で答えよ。
(2)油脂Xのヨウ素価が86.2であるとき,油脂Xの分子内には,いくつの炭素-炭素二重結合が含まれているか。 ただし, 油脂Xの分子内には,炭素-炭素三重結合は含まれていないものとする。
この動画を見る
油脂1gのけん化に要する水酸化カリウムの質量[mg]をけん化価といい,油脂 100g に付加するヨウ素の質量[g] をヨウ素価という。
次の各問いに答えよ。 ただし, KOH の式量を56, I2 の分子量を254とする。
(1) 油脂Xのけん化価は190であった。油脂Xの分子量を有効数字3桁で答えよ。
(2)油脂Xのヨウ素価が86.2であるとき,油脂Xの分子内には,いくつの炭素-炭素二重結合が含まれているか。 ただし, 油脂Xの分子内には,炭素-炭素三重結合は含まれていないものとする。
【数Ⅰ】【2次関数】絶対値を含む関数のグラフ ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|
次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)
次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
この動画を見る
次の関数のグラフをかけ。
(1)y=|2x+1|
(2)y=|x²+x|
(3)y=|x²-3x-4|
次の関数のグラフをかけ。
(1)y=x²-4|x|
(2)y=|x+1|(x-3)
次の関数のグラフをかけ。
(1)y=|x|+|x-1|
(2)y=|x+1|-|x-2|
【数Ⅰ】【2次関数】2次不等式応用4 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。
放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。
2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る
2次関数y=x²+mx+2が次の条件を満たすように、定数mの値の範囲を定めよ。
(1)この2次関数のグラフとx軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフとx軸のx<-1の部分が異なる2点で交わる。
放物線y=x²+2(m-1)x+5-m²がx軸の正の部分と負の部分のそれぞれと交わるように、定数mの値の範囲を定めよ。
2次方程式x²+2mx+2m+3=0が次のような実数解をもつように、定数mの値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
【数Ⅰ】【2次関数】2次不等式応用3 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の$x$についての不等式を解け。
(1)$x^2-(a+2)x+2a\lt 0$
(2)$x^2-(a-1)x-a\gt 0$
(3)$x^2-ax-2a^2\leqq 0$
不等式$x^2-(a+1)x+a\lt 0$を満たす整数$x$がちょうど2個だけ存在するように、定数$a$の値の範囲を定めよ。
この動画を見る
次の$x$についての不等式を解け。
(1)$x^2-(a+2)x+2a\lt 0$
(2)$x^2-(a-1)x-a\gt 0$
(3)$x^2-ax-2a^2\leqq 0$
不等式$x^2-(a+1)x+a\lt 0$を満たす整数$x$がちょうど2個だけ存在するように、定数$a$の値の範囲を定めよ。
【数Ⅰ】【2次関数】2次不等式応用2 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの放物線$y=x^2+mx+3m,y=x^2-mx+m^2-3$が、いずれも$x$軸と共有点をもたないとき、定数$m$の値の範囲を求めよ。
2つの2次方程式$x^2+mx+m=0$・・・・・・①、$x^2-2mx+m+6=0$・・・・・・②がある。次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)①、②がともに異なる2つの実数解をもつ。
(2)①、②がともに実数解をもたない。
(3)①、②の少なくとも一方が実数解をもつ。
(4) ①、②のうち一方だけが、異なる2つの実数解をもつ。
この動画を見る
2つの放物線$y=x^2+mx+3m,y=x^2-mx+m^2-3$が、いずれも$x$軸と共有点をもたないとき、定数$m$の値の範囲を求めよ。
2つの2次方程式$x^2+mx+m=0$・・・・・・①、$x^2-2mx+m+6=0$・・・・・・②がある。次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)①、②がともに異なる2つの実数解をもつ。
(2)①、②がともに実数解をもたない。
(3)①、②の少なくとも一方が実数解をもつ。
(4) ①、②のうち一方だけが、異なる2つの実数解をもつ。
【高校物理】水平ばね振り子【毎週土曜日16時更新!】

単元:
#物理#力学#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、ばね定数kの軽いばねをなめらかで水平な台上に置き、一端を壁につけ、他端には質量mの物体をつなぐ。点Oから左向きに距離Aはなれ
た点Pまでばねを縮め、手をはなすと、物体は点Oを中心とするPQ間で単振動をした。
(1) 点Pで手をはなしたとき、物体にはたらく水平方向の力の大きさはいくらか。
(2)物体がPQ間で単振動をしているとき、点Oでの物体の速さはいくらか。
(3) 点Qでの物体の加速度を求めよ。
(4) 物体が、点Pから点Oまで進むのにかかる時間はいくらか。
(5) 物体が点Qに達した瞬間、物体とばねとの接続が外れた。その後、物体はどのような連動をするか。簡潔に説明せよ。
この動画を見る
図のように、ばね定数kの軽いばねをなめらかで水平な台上に置き、一端を壁につけ、他端には質量mの物体をつなぐ。点Oから左向きに距離Aはなれ
た点Pまでばねを縮め、手をはなすと、物体は点Oを中心とするPQ間で単振動をした。
(1) 点Pで手をはなしたとき、物体にはたらく水平方向の力の大きさはいくらか。
(2)物体がPQ間で単振動をしているとき、点Oでの物体の速さはいくらか。
(3) 点Qでの物体の加速度を求めよ。
(4) 物体が、点Pから点Oまで進むのにかかる時間はいくらか。
(5) 物体が点Qに達した瞬間、物体とばねとの接続が外れた。その後、物体はどのような連動をするか。簡潔に説明せよ。
【高校化学】エステルの異性体【毎週土曜日16時更新!】

単元:
#化学#理科(高校生)
教材:
#中高教材#セミナー化学基礎・化学
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の文中の( )に適当な数値を入れよ。
分子式 C₅H₁₀O₂をもつ化合物のうち,エステルに分類されるものは(ア)種類存在し,それらのうち不斉炭素原子をもつものは(イ)種類である。
これらの構造異性体を加水分解して生じるカルボン酸およびアルコールの種類は,構造異性体を含めて数えると,それぞれ(ウ)種類および(エ)種類である。
生じたカルボン酸のうち, アンモニア性硝酸銀水溶液と反応して銀を析出するものは(オ)種類である。
また,生じたアルコールのうち, ヨードホルム反応を示すものは(カ)種類,酸化剤によってケトンを与えるものは(キ)種類である。
この動画を見る
次の文中の( )に適当な数値を入れよ。
分子式 C₅H₁₀O₂をもつ化合物のうち,エステルに分類されるものは(ア)種類存在し,それらのうち不斉炭素原子をもつものは(イ)種類である。
これらの構造異性体を加水分解して生じるカルボン酸およびアルコールの種類は,構造異性体を含めて数えると,それぞれ(ウ)種類および(エ)種類である。
生じたカルボン酸のうち, アンモニア性硝酸銀水溶液と反応して銀を析出するものは(オ)種類である。
また,生じたアルコールのうち, ヨードホルム反応を示すものは(カ)種類,酸化剤によってケトンを与えるものは(キ)種類である。
【数Ⅰ】【2次関数】2次不等式応用1 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次不等式$ax^2+x+b\gt 0$の解が$x\lt -3,2\lt x$であるとき、定数$a,b$の値を求めよ。
$a,b$は定数とする。2次不等式$4x^2+ax+b\lt 0$の解が$1\lt x\lt \dfrac{5}{4}$であるとき、2次不等式$bx^2+ax+4\geqq 0$の解を求めよ。
この動画を見る
2次不等式$ax^2+x+b\gt 0$の解が$x\lt -3,2\lt x$であるとき、定数$a,b$の値を求めよ。
$a,b$は定数とする。2次不等式$4x^2+ax+b\lt 0$の解が$1\lt x\lt \dfrac{5}{4}$であるとき、2次不等式$bx^2+ax+4\geqq 0$の解を求めよ。
【数Ⅰ】【2次関数】2次不等式文章問題 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
立方体の縦を1cm短くし、横はそのまま、高さは2cm長くして直方体を作る。このとき、直方体の体積がもとの立方体の体積より大きくならないのは、もとの立方体の1辺の長さがどのような範囲にあるときか。
和が20である2つの整数の積が96以上になるとき、この2つの整数の組をすべて求めよ。
この動画を見る
立方体の縦を1cm短くし、横はそのまま、高さは2cm長くして直方体を作る。このとき、直方体の体積がもとの立方体の体積より大きくならないのは、もとの立方体の1辺の長さがどのような範囲にあるときか。
和が20である2つの整数の積が96以上になるとき、この2つの整数の組をすべて求めよ。
【数Ⅰ】【2次関数】2次関数の文章題3 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$AB=6\sqrt{3}、CA=9、∠C=90°$の三角形$ABC$がある。
点$P$は頂点$C$から$A$まで辺$CA$上を毎秒3の速さで進む。
点$Q$は$P$と同時に頂点$B$を出発し、頂点$C$まで辺$BC$上を毎秒$\sqrt{3}$の速さで進む。
この$P,Q$間の距離の最小値を求めよ。
この動画を見る
$AB=6\sqrt{3}、CA=9、∠C=90°$の三角形$ABC$がある。
点$P$は頂点$C$から$A$まで辺$CA$上を毎秒3の速さで進む。
点$Q$は$P$と同時に頂点$B$を出発し、頂点$C$まで辺$BC$上を毎秒$\sqrt{3}$の速さで進む。
この$P,Q$間の距離の最小値を求めよ。
【数Ⅰ】【2次関数】2次関数の文章題2 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
点$P(t,t^2)$は放物線$y=x^2$上の点で、2点$A(-1,1)、B(4,16)$の間にある。このとき、三角形$APB$の面積の最大値を求めよ。
この動画を見る
点$P(t,t^2)$は放物線$y=x^2$上の点で、2点$A(-1,1)、B(4,16)$の間にある。このとき、三角形$APB$の面積の最大値を求めよ。
【数Ⅰ】【2次関数】2次関数の文章題1 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
周囲の長さが24cmである長方形について、次の問いに答えよ。
(1) この長方形の面積の最大値を求めよ。また、そのとき、長方形はどのような形か。
(2) この長方形の対角線を1辺とする正方形の面積の最小値を求めよ。
この動画を見る
周囲の長さが24cmである長方形について、次の問いに答えよ。
(1) この長方形の面積の最大値を求めよ。また、そのとき、長方形はどのような形か。
(2) この長方形の対角線を1辺とする正方形の面積の最小値を求めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け11 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$f(x)=-x^2+2x+2(a\leqq x\leqq a+1)$の最大値を$M(a)$、最小値を$m(a)$とする。
(1)$M(a)$を求め、$b=M(a)$のグラフをかけ
(2)$m(a)$を求め、$b=m(a)$のグラフをかけ
この動画を見る
関数$f(x)=-x^2+2x+2(a\leqq x\leqq a+1)$の最大値を$M(a)$、最小値を$m(a)$とする。
(1)$M(a)$を求め、$b=M(a)$のグラフをかけ
(2)$m(a)$を求め、$b=m(a)$のグラフをかけ
【数Ⅰ】【2次関数】2次関数の最大最小場合分け10 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=x^2-2x+1(a\leqq x\leqq a+1)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る
$a$は定数とする。関数$y=x^2-2x+1(a\leqq x\leqq a+1)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
【数Ⅰ】【2次関数】2次関数の最大最小場合分け9 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$y=x^2-2x+m$の値が$0\leqq x\leqq 3$の範囲で常に負となるように、定数$m$の値の範囲を定めよ
この動画を見る
関数$y=x^2-2x+m$の値が$0\leqq x\leqq 3$の範囲で常に負となるように、定数$m$の値の範囲を定めよ
【数Ⅰ】【2次関数】2次関数の最大最小場合分け8 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a\gt 0$とする。関数$y=ax^2+2ax+b(-2\leqq x\leqq 1)$の最大値が6、最小値が3であるように、定数$a,b$の値を定めよ。
この動画を見る
$a\gt 0$とする。関数$y=ax^2+2ax+b(-2\leqq x\leqq 1)$の最大値が6、最小値が3であるように、定数$a,b$の値を定めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け7 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$y=x^2-2ax-a(0\leqq x\leqq 2)$の最小値が$-2$であるように、定数$a$の値を定めよ。
この動画を見る
関数$y=x^2-2ax-a(0\leqq x\leqq 2)$の最小値が$-2$であるように、定数$a$の値を定めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け6 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a\lt 0$とする。関数$y=-x^2+2ax+3a(0\leqq x\leqq 1)$の最小値が$-11$であるように、定数$a$の値を定めよ。
この動画を見る
$a\lt 0$とする。関数$y=-x^2+2ax+3a(0\leqq x\leqq 1)$の最小値が$-11$であるように、定数$a$の値を定めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け5 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
この動画を見る
$k$は定数とする。2次関数$y=x^2+2kx+k$の最小値を$m$とする。
(1) $m$は$k$の関数である。$m$を$k$の式で表せ。
(2) $k$の関数$m$の最大値とそのときの$k$の値を求めよ。
【数Ⅰ】【2次関数】2次関数の最大最小場合分け4 ※問題文は概要欄

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a$を定数とする。
2次関数$y=-x^2+2ax(0\leqq x\leqq 1)$の最大値を$M(a)$とするとき、次の問いに答えよ。
(1) $M(a)$を求めよ
(2) $b=M(a)$のグラフをかけ。
この動画を見る
$a$を定数とする。
2次関数$y=-x^2+2ax(0\leqq x\leqq 1)$の最大値を$M(a)$とするとき、次の問いに答えよ。
(1) $M(a)$を求めよ
(2) $b=M(a)$のグラフをかけ。
【高校物理】コンデンサーの接続【定期考査直前 特別企画!】【月・木・土 16時新作公開!】

単元:
#物理#電気#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
図において、C₁、C₂、C₃ は電気容量がそれぞれ 20µF、30µF、40µF のコンデンサー、E は 20V の電池、S はスイッチである。はじめ、すべてのコンデンサーの電気量は 0 であり、スイッチ S は開いてある。
(1) C₁、C₂ の 2 つの合成容量はいくらか。
(2) C₁、C₂、C₃ の合成容量はいくらか。
(3) スイッチ S を閉じた後、C₁ および C₂ の両端に加わる電圧はそれぞれいくらか。
(4) (3)において、C₁、C₂、C₃ にたくわえられる電気量はそれぞれいくらか。
この動画を見る
図において、C₁、C₂、C₃ は電気容量がそれぞれ 20µF、30µF、40µF のコンデンサー、E は 20V の電池、S はスイッチである。はじめ、すべてのコンデンサーの電気量は 0 であり、スイッチ S は開いてある。
(1) C₁、C₂ の 2 つの合成容量はいくらか。
(2) C₁、C₂、C₃ の合成容量はいくらか。
(3) スイッチ S を閉じた後、C₁ および C₂ の両端に加わる電圧はそれぞれいくらか。
(4) (3)において、C₁、C₂、C₃ にたくわえられる電気量はそれぞれいくらか。
【高校物理】抵抗率【定期考査直前 特別企画!】【月・木・土 16時新作公開!】

単元:
#物理#電気#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
長さ1.0m、断面積 5.0×10⁻⁷m² の円柱状の導体に、12V の電圧を加えると、2.0 Aの電流が流れた。次の各問に答えよ。
(1) 導体の抵抗はいくらか。また、抵抗率はいくらか。
(2) この導体と同じ材質を用いて、長さ 0.50m、断面積 1.0×10⁻⁶m² の導線をつくった。この導線の抵抗はいくらか。
この動画を見る
長さ1.0m、断面積 5.0×10⁻⁷m² の円柱状の導体に、12V の電圧を加えると、2.0 Aの電流が流れた。次の各問に答えよ。
(1) 導体の抵抗はいくらか。また、抵抗率はいくらか。
(2) この導体と同じ材質を用いて、長さ 0.50m、断面積 1.0×10⁻⁶m² の導線をつくった。この導線の抵抗はいくらか。
