福田次郎 - 質問解決D.B.(データベース) - Page 29

福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

静岡県の公立高校の数学教員として長年受験指導あり。
藤枝東高校8年、静岡市立高校8年、静岡高校12年。特に静岡高校では9年間にわたり進路指導主任として大学側とも関係を構築。
その経験を活かして数学の動画を日々配信中!
数学関係のアプリも多数手がけています。
過去問を中心に受験対策数学動画多数。

福田の数学〜九州大学2022年文系第1問〜絶対値の付いた放物線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
aを$-3 \lt a \lt 13$を満たす実数とし、次の曲線Cと直線lが接しているとする。
$C:y=|x^2+(3-a)x-3a|, l:y=-x+13$
以下の問いに答えよ。
(1)aの値を求めよ。
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。

2022九州大学文系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第5問〜媒介変数表示のグラフの対称性とグラフの追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の曲線Cを、媒介変数tを用いて次のように定める。$x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)$
以下の問いに答えよ。
(1)区間$0 \lt t \lt \frac{\pi}{6}$において、$\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0$であることを示せ。
(2)曲線Cの$0 \leqq t \leqq \frac{\pi}{6}$の部分、x軸、直線$y=\frac{1}{\sqrt3}x$で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに$\frac{\pi}{3}$だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第4問〜定積分の定義から性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
区間$a \leqq x \leqq b$で連続な関数f(x)に対して$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$\int_a^bf(x)dx=F(b)-F(a)         \ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$ a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、$f(x),g(x),h(x)$は区間$a \leqq x \leqq b$で連続な関数、$k,l$は定数である。
以下、$f(x)$を区間$0 \leqq x \leqq 1$で連続な増加関数とし、
nを自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③$
よって、はさみうちの原理より$\lim_{n \to \infty}S_n=\int_0^1f(x)dx$が成り立つ。

(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことを、導関数の定義に従って示せ。
また、この等式と定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と平均値の定理を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第3問〜約数と倍数と不定方程式の自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
自然数m,nが
$n^4=1+210m^2  \ldots①$
を満たすとき、以下の問いに答えよ。
(1)$\frac{n^2+1}{2},\ \frac{n^2-1}{2}$は互いに素な整数であることを示せ。
(2)$n^2-1$は168の倍数であることを示せ。
(3)①を満たす自然数の組(m,n)を1つ求めよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第2問〜商と余りの関係と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$を3以上の自然数、$\alpha,\beta$を相異なる実数とするとき、以下の問いに答えよ。
(1)次を満たす実数A,B,Cと整式Q(x)が存在することを示せ。
$x^n=(x-\alpha)(x-\beta)^2Q(x)+A(x-\alpha)(x-\beta)+B(x-\alpha)+C$
(2)(1)のA,B,Cを$n,\alpha,\beta$を用いて表せ。
(3)(2)のAについて、nと$\alpha$を固定して、$\beta$を$\alpha$に近づけたときの極限
$\lim_{\beta \to \alpha}A$を求めよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第1問〜空間における折れ線の最小〜平面の方程式を勉強するよ!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
座標空間内の5点
$O(0,0,0), A(1,1,0), B(2,1,2), P(4,0,-1), Q(4,0,5)$
を考える。3点O,A,Bを通る平面を$\alpha$とし、$\overrightarrow{ a }=\overrightarrow{ OA }, \overrightarrow{ b }=\overrightarrow{ OB }$とおく。
以下の問いに答えよ。
(1)ベクトル$\overrightarrow{ a }, \overrightarrow{ b }$の両方に垂直であり、x成分が正であるような、
大きさが1のベクトル$\overrightarrow{ n }$を求めよ。
(2)平面$\alpha$に関して点Pと対称な点P'の座標を求めよ。
(3)点Rが平面$\alpha$上を動くとき、$|\overrightarrow{ PR }|+|\overrightarrow{ RQ }|$が最小となるような
点Rの座標を求めよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜神戸大学2022年文系第3問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を実数とし、$1 \lt a \lt b$とする。以下の問いに答えよ。

(1)x,y,zを0でない実数とする。$a^x=b^y=(ab)^z$ならば$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$であることを示せ。
(2)$m,n$を$m \gt n$を満たす自然数とし、$\frac{1}{m}+\frac{1}{n}=\frac{1}{5}$とする。$m,n$の値を求めよ。
(3)$m,n$を自然数とし、$a^m=b^n=(ab)^5$とする。bの値をaを用いて表せ。

2022神戸大学文系過去問
この動画を見る 

福田の数学〜神戸大学2022年理系第5問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数、$p$を素数とし、$1 \lt a \lt b$とする。以下の問いに答えよ。

(1)x,y,zを0でない実数とする。$a^x=b^y=(ab)^z$ならば$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$であることを示せ。
(2)m,nを$m \gt n$を満たす自然数とし、$\frac{1}{m}+\frac{1}{n}=\frac{1}{p}$とする。m,nの値をpを用いて表せ。
(3)m,nを自然数とし、$a^m=b^n=(ab)^p$とする。bの値をa,pを用いて表せ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜神戸大学2022年文系第2問〜円が切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とし、円$x^2+y^2=1$と直線$y=\sqrt ax-2\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)$s,t$の値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。

2022神戸大学文系過去問
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線$\frac{x^2}{4}-\frac{y^2}{4}=1$と直線$y=\sqrt ax+\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜神戸大学2022年文系第1問〜場合分けされた放物線と直線の共有点と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。$x \geqq 0$のとき$f(x)=^2、x \lt 0$のとき$f(x)=-x^2$とし、
曲線$y=f(x)$をC、直線$y=2ax-1$を$l$とする。以下の問いに答えよ。
(1)Cとlの共有点の個数を求めよ。
(2)Cとlがちょうど2個の共有点をもつとする。Cとlで囲まれた図形の面積を求めよ。

2022神戸大学文系過去問
この動画を見る 

福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数、$0 \lt a \lt 1$とし、$f(x)=\log(1+x^2)-ax^2$とする。以下の問いに答えよ.
(1)関数f(x)の極値を求めよ。
(2)$f(1)=0$とする。曲線$y=f(x)$とx軸で囲まれた図形の面積を求めよ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)実数$\alpha,\beta$に対し、

$\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}$
が成り立つことを示せ。
(2)a,bを$b \gt a^2$を満たす定数とし、座標平面に点$A(a,b)$をとる。さらに、
点Aを通り、傾きがkの直線をlとし、直線lと放物線$y=x^2$で囲まれた部分の面積を
$S(k)$とする。kが実数全体を動くとき、$S(k)$の最小値を求めよ。

2022大阪大学文系過去問
この動画を見る 

福田の数学〜神戸大学2022年理系第2問〜無限等比級数の図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
mを3以上の自然数、$\theta=\frac{2\pi}{m}$, $C_1$を半径1の円とする。
円$C_1$に内接する(全ての頂点が$C_1$上にある)正m角形を$P_1$とし、
$P_1$に内接する($P_1$の全ての辺と接する)円を$C_2$とする。
同様に、nを自然数とするとき、円$C_n$に内接する正m角形を$P_n$とし、
$P_n$に内接する円を$C_{n+1}$とする。$C_n$の半径を$r_n,C_n$の内側
で$P_n$の外側の部分の面積を$s_n$とし、$f(m)=\sum_{n=1}^{\infty}s_n$とする。以下の問いに答えよ。
(1)$r_n,s_n$の値を$\theta,n$を用いて表せ。
(2)$f(m)$の値を$\theta$を用いて表せ。
(3)極限値$\lim_{m \to \infty}f(m)$を求めよ。
ただし必要があれば$\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}$を用いてよい。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第2問〜さいころの目と最大公約数、最小公倍数の確率(そのまま考えるか余事象で考えるかの判断基準を解説します)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とし、1個のさいころをn回投げて出る目の数を順に
$X_1,X_2,\ldots\ldots,X_n$とする。$X_1,X_2,\ldots\ldots,X_n$の最小公倍数を$L_n$,
最大公約数を$G_n$とするとき、以下の問いに答えよ。
(1)$L_2=5$となる確率および$G_2=5$となる確率を求めよ。
(2)$L_n$が素数でない確率を求めよ。
(3)$G_n$が素数でない確率を求めよ。

2022大阪大学文系過去問
この動画を見る 

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を$a_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)$によって定める。
以下の問いに答えよ。
(1)全ての自然数$n$について$a_{n+1}=\frac{2}{\sqrt{a_n}}$が成り立つことを示せ。
(2)数列$\left\{b_n\right\}$を$b_n=\log a_n (n=1,2,3,\ldots)$によって定める。
$b_n$の値を$n$を用いて表せ。
(3)極限値$\lim_{n \to \infty}a_n$を求めよ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。
また、線分BNと線分CMの交点をPとする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。

2022大阪大学文系過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第5問〜媒介変数表示のグラフで囲まれた面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、tを媒介変数として
$x=e^t\cos t+e^\pi, y=e^t\sin t (0 \leqq t \leqq \pi)$
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。

2022大阪大学理系過去問
この動画を見る 

福田の数学〜名古屋大学2022年文系第3問〜放物線と放物線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、放物線$y=\frac{1}{2}x^2$を$C_1$、放物線$y=-(x-a)^2+b$を$C_2$とする。
(1)$C_1$と$C_2$が異なる2点で交わるためのa,bの条件を求めよ。
以下、$C_1$と$C_2$は異なる2点で交わるとし、$C_1$と$C_2$で囲まれた図形の面積をSとする。
(2)$S=16$となるためのa,bの条件を求めよ。
(3)a,bは$b \leqq a+3$を満たすとする。このときSの最大値を求めよ。

2022名古屋大学文系過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第4問〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\log(x+1)+1$とする。以下の問いに答えよ。
(1)方程式$f(x)=x$は、$x \gt 0$の範囲でただ1つの解を
もつことを示せ。
(2)(1)の解を$\alpha$とする。実数$x$が$0 \lt x \lt \alpha$を満たすならば、
次の不等式が成り立つことを示せ。
$0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)$
(3)数列$\left\{x_n\right\}$を
$x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)$
で定める。このとき、全ての自然数nに対して
$\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)$
が成り立つことを示せ。
(4)(3)の数列$\left\{x_n\right\}$について、$\lim_{n \to \infty}x_n=\alpha$を示せ。

2022大阪大学理系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第5問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 中身の見えない2つの箱があり、1つの箱には赤玉2つと白玉1つが入っており、\\
もう1つの箱には赤玉1つと白玉2つが入っている。どちらかの箱を選び、選んだ\\
箱の中から玉を1つ取り出して元に戻す、という操作を繰り返す。\\
(1) 1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回\\
と同じ箱、前回取り出した玉が白玉なら前回とは異なる箱を選ぶ。n回目に赤玉\\
を取り出す確率p_nを求めよ。\\
(2)1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回\\
と同じ箱、前回取り出した玉が白玉なら箱を無作為に選ぶ。n回目に赤玉を取り\\
出す確率 q_nを求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 正の実数tに対し、座標平面上の2点P(0,t)とQ(\frac{1}{t},0)を考える。\hspace{80pt}\\
tが1 \leqq t \leqq 2の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。
\end{eqnarray}

2022大阪大学理系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ tを実数とし、座標空間に点A(t-1,t,t+1)をとる。また、(0,0,0),(1,0,0),\\
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を\\
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を\\
Wとし、Wの体積をf(t)とする。\\
(1)f(-1)を求めよ。\\
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第2問〜三角関数と論証

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ \alpha=\frac{2\pi}{7}とする。以下の問いに答えよ。\\
(1)\cos4\alpha=\cos3\alphaであることを示せ。\\
(2)f(x)=8x^3+4x^2-4x-1とするとき、f(\cos\alpha)=0が成り立つことを示せ。\\
(3)\cos\alphaは無理数であることを示せ。
\end{eqnarray}

2022大阪大学理系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)実数x,yについて、「|x-y| \leqq x+y」であることの必要十分条件は\\
「x \geqq 0かつy \geqq 0 」であることを示せ。\\
(2)次の不等式で定まるxy平面上の領域を図示せよ。\\
|1+y-2x^2-y^2| \leqq 1-y-y^2
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
Z+w=Zw
を満たす点wが描く図形を求めよ。

2022大阪大学理系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第2問〜平面上の三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

福田の数学〜名古屋大学2022年理系第4問〜定積分の極限と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 関数f(x)は区間x \geqq 0において連続な増加関数でf(0)=1を満たすとする。\\
ただしf(x)が区間x \geqq 0における増加関数であるとは、区間内の任意の実数x_1,x_2に対し\\
x_1 \lt x_2ならばf(x_1) \lt f(x_2)が成り立つ時をいう。以下、nは正の整数とする。\\
(1)\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty を示せ。\\
\\
(2)区間y \gt 2 において関数F_n(y)をF_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dxと定めるとき、\\
\\
\lim_{y \to \infty}F_n(y)=\inftyを示せ。また2+\frac{1}{n}より大きい実数a_nで\\
\\
\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0\\
\\
を満たすものがただ1つ存在することを示せ。\\
(3)(2)のa_nについて、不等式a_n \lt 4がすべてのnに対して成り立つことを示せ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第1問〜2と3の累乗の積2個で2022を作る

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 2^a3^b+2^c3^d=2022を満たす0以上の整数a,b,c,dの組を求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

福田の数学〜名古屋大学2022年理系第3問〜複素数平面上の正六角形の頂点の位置

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。\\
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。\\
互いに異なる0でない複素数\alpha,\beta,\gammaが、\\
0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0, 2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0\\
を満たし、\alpha,\beta,\gammaのそれぞれが正六角形OABCDEの頂点のいずれかであるとする。\\
(1)\frac{\beta}{\alpha}を求め、\alpha,\betaがそれぞれどの頂点か答えよ。\\
(2)組(\alpha,\beta,\gamma)を全て求め、それぞれの組について正六角形OABCDEを\\
複素数平面上に図示せよ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 
PAGE TOP