鈴木貫太郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
早稲田 整数問題 高校数学 Japanese university entrance exam questions
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
この動画を見る
早稲田大学過去問題
m,nは自然数。p,qは素数(p<q)
1~nまでの自然数の中でnと互いに素である自然数の個数をf(n)とする。
(1)$f(pq)=24$となるp,qを求めよ。
(2)$f(2^m3^n)$をm,nで表せ。
久留米(医) 5倍角 Japanese university entrance exam questions
単元:
#数Ⅱ#三角関数#微分法と積分法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
久留米大学過去問題
$0 \leqq x<\frac{\pi}{2}$
$f(x)=cos5x+9cos3x-10cosx$
f(x)の最小値を求めよ。
この動画を見る
久留米大学過去問題
$0 \leqq x<\frac{\pi}{2}$
$f(x)=cos5x+9cos3x-10cosx$
f(x)の最小値を求めよ。
灘中 中学入試問題に挑戦
単元:
#算数(中学受験)#中3数学#式の計算(展開、因数分解)#灘中学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
この動画を見る
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
一橋大 整数問題 高校数学 Japanese university entrance exam questions
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
'98一橋大学過去問題
すべての自然数nに対して$5^n+an+b$が16の倍数となるような
16以下の自然数a,bを求めよ。
この動画を見る
'98一橋大学過去問題
すべての自然数nに対して$5^n+an+b$が16の倍数となるような
16以下の自然数a,bを求めよ。
大阪市立大 漸化式 Japanese university entrance exam questions
単元:
#数列#漸化式#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
大阪市立大学過去問題
n自然数
$a_1 = 1 \quad a_{n+1}>a_n$
$(a_{n+1}-a_n)^2= a_{n+1}+a_n$
この動画を見る
大阪市立大学過去問題
n自然数
$a_1 = 1 \quad a_{n+1}>a_n$
$(a_{n+1}-a_n)^2= a_{n+1}+a_n$
大阪大 整数 高校数学 Japanese university entrance exam questions
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'99大阪大学過去問題
自然数の組(a,b)でa以上b以下の整数の和が500となるものをすべて求めよ。
a<b
この動画を見る
'99大阪大学過去問題
自然数の組(a,b)でa以上b以下の整数の和が500となるものをすべて求めよ。
a<b
東大 微分 代講ヨビノリたくみ Japanese university entrance exam questions Tokyo University
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'98東京大学過去問題
aは0でない実数
関数
$f(x)=(3x^2-4)(x-a+\frac{1}{a})$の極大値と極小値の差が最小となるaを求めよ。
この動画を見る
'98東京大学過去問題
aは0でない実数
関数
$f(x)=(3x^2-4)(x-a+\frac{1}{a})$の極大値と極小値の差が最小となるaを求めよ。
東海大(医)漸化式 高校数学 Japanese university entrance exam questions
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
東海大学過去問題
$a_1=0,a_{n+1=2a_n+n^2}$
一般項$a_n$を求めよ。
この動画を見る
東海大学過去問題
$a_1=0,a_{n+1=2a_n+n^2}$
一般項$a_n$を求めよ。
東邦(医)正五角形の外接円と内接円の半径の比 高校数学 Japanese university entrance exam questions
単元:
#複素数平面#複素数平面#図形への応用#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
東邦大学過去問題
正五角形の外接円、内接円の半径をそれぞれR,rとする。
$\frac{r}{R}$の値を求めよ。
この動画を見る
東邦大学過去問題
正五角形の外接円、内接円の半径をそれぞれR,rとする。
$\frac{r}{R}$の値を求めよ。
東北大 三次関数と放物線の共有点の数 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
$y=x^2+k$と$y=|x(x^2-1)|$との共有点の個数
この動画を見る
東北大学過去問題
$y=x^2+k$と$y=|x(x^2-1)|$との共有点の個数
灘中 中学入試にチャレンジ
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#灘中学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
灘中学校過去問題
$\quad$10桁 $\quad\quad$ 10桁
7777777777 7777777777
は計算すると20桁になる。この20桁の上10桁と下10桁の数の和を求めよ。
上2桁と下2桁の和とは1234なら12+34のこと
この動画を見る
灘中学校過去問題
$\quad$10桁 $\quad\quad$ 10桁
7777777777 7777777777
は計算すると20桁になる。この20桁の上10桁と下10桁の数の和を求めよ。
上2桁と下2桁の和とは1234なら12+34のこと
防衛大 漸化式 Japanese university entrance exam questions
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$a_1=1 \quad a_{n+1}=2^{2n-2}(a_n)^2$
n自然数、一般項を求めよ。
この動画を見る
防衛大学過去問題
$a_1=1 \quad a_{n+1}=2^{2n-2}(a_n)^2$
n自然数、一般項を求めよ。
一橋大 整数問題 Japanese university entrance exam questions
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
一橋大学過去問題
(1)$n^3+1$が3で割り切れるnをすべて求めよ。
(2)$n^n+1$が3で割り切れるnをすべて求めよ。
(1)(2)ともにnは自然数
この動画を見る
一橋大学過去問題
(1)$n^3+1$が3で割り切れるnをすべて求めよ。
(2)$n^n+1$が3で割り切れるnをすべて求めよ。
(1)(2)ともにnは自然数
慶應(医)数列 高校数学 Japanese university entrance exam questions
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
数列$\{ a_n \}$の項の間に次の関係がある。
$a_1=\frac{1}{2},a_2=\frac{1}{6}$
$\frac{a_n+a_{n+1}+a_{n+2}}{3} = \frac{1}{n(n+3)}$
$n=1,2,3\cdots$
$a_3,a_4,a_n,\displaystyle\sum_{k=1}^\infty a_n$を求めよ。
この動画を見る
慶応義塾大学過去問題
数列$\{ a_n \}$の項の間に次の関係がある。
$a_1=\frac{1}{2},a_2=\frac{1}{6}$
$\frac{a_n+a_{n+1}+a_{n+2}}{3} = \frac{1}{n(n+3)}$
$n=1,2,3\cdots$
$a_3,a_4,a_n,\displaystyle\sum_{k=1}^\infty a_n$を求めよ。
名古屋大 微分・積分 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#面積、体積
指導講師:
鈴木貫太郎
問題文全文(内容文):
名古屋大学過去問題
$y=x^2(x+1)とy=k^2(x+1)$とで囲まれる面積が最小となるkの値を求めよ。
$(0 \leqq k \leqq 1)$
この動画を見る
名古屋大学過去問題
$y=x^2(x+1)とy=k^2(x+1)$とで囲まれる面積が最小となるkの値を求めよ。
$(0 \leqq k \leqq 1)$
広島大 円の方程式 三角比 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
この動画を見る
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
東京女子医大 整数問題 高校数学 Japanese university entrance exam questions
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京女子医科大学過去問題
$2^{40}+1=mn \quad (1<m<n)$を満たす自然数の組m,nがただ1つある。
mの値を求めよ。
この動画を見る
東京女子医科大学過去問題
$2^{40}+1=mn \quad (1<m<n)$を満たす自然数の組m,nがただ1つある。
mの値を求めよ。
和歌山大 ド・モアブルの定理 Japanese university entrance exam questions
単元:
#大学入試過去問(数学)#複素数平面#数列#数学的帰納法#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数B#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
この動画を見る
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
帯広畜産大 漸化式 高校数学 Japanese university entrance exam questions
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
帯広畜産大学過去問題
初項~第n項までの和を$S_n$とする。
一般項$a_n$を求めよ。
$S_n = 9- \frac{1}{2}a_n-\frac{1}{3^{n-2}}$
この動画を見る
帯広畜産大学過去問題
初項~第n項までの和を$S_n$とする。
一般項$a_n$を求めよ。
$S_n = 9- \frac{1}{2}a_n-\frac{1}{3^{n-2}}$
大阪大 微分 立命館 数式 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#立命館大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$
大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
この動画を見る
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$
大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
大阪教育大 整式の剰余 複素数 Japanese university entrance exam questions
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$\omega$を方程式$x^2+x+1-0$の解を1つとする.
$(\omega+1)^{12}$の値を求めよ.
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ.
大阪教育大過去問
この動画を見る
(1)$\omega$を方程式$x^2+x+1-0$の解を1つとする.
$(\omega+1)^{12}$の値を求めよ.
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ.
大阪教育大過去問
信州大学 整数問題 Japanese university entrance exam questions
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
この動画を見る
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
信州大学 整数問題 Japanese university entrance exam questions
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
大阪教育大学過去問題
(1)ωを方程式$x^2+x+1=0$の解を1つとする。$(ω+1)^{12}$の値を求めよ。
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ。
この動画を見る
大阪教育大学過去問題
(1)ωを方程式$x^2+x+1=0$の解を1つとする。$(ω+1)^{12}$の値を求めよ。
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ。
京都大 三角関数 4次方程式 高校数学 大学受験 Japanese university entrance exam questions Kyoto University
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2014京都大学過去問題
$0 \leqq θ < 90^\circ \quad$xについての4次方程式
$\{ x^2-2(cosθ)x-cosθ+1 \} x$
$\{ x^2-2(tanθ)x+3 \} = 0$は虚数解を少なくとも1つ持つことを示せ。
この動画を見る
2014京都大学過去問題
$0 \leqq θ < 90^\circ \quad$xについての4次方程式
$\{ x^2-2(cosθ)x-cosθ+1 \} x$
$\{ x^2-2(tanθ)x+3 \} = 0$は虚数解を少なくとも1つ持つことを示せ。
立教大 立体図形・関数最大値 信州大 指数方程式 高校数学 Japanese university entrance exam questions
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照
信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
この動画を見る
立教大学過去問題
底面の直径が6高さが12の円錐に図のように円柱が内接している。円柱の体積の最大値
*図は動画内参照
信州大学過去問題
$2^{3x+2}-13・2^{2x}+11・2^x-2=0$を解け
東北大 常用対数 桁数と最高位の数字 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
この動画を見る
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
連続n個の自然数の積はn!で割り切れる。岩手大 整数・因数分解 高校数学 Japanese university entrance exam questions
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
a,b,cは連続した自然数
$a^2b+a^2c+ab^2+b^2c+bc^2+ac^2+2abc$は6の倍数であることを示せ。
この動画を見る
岩手大学過去問題
a,b,cは連続した自然数
$a^2b+a^2c+ab^2+b^2c+bc^2+ac^2+2abc$は6の倍数であることを示せ。
同志社大・早稲田(商) 式の計算 高校数学 Japanese university entrance exam questions
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
同志社大学過去問題
$x+y+z=3 , \quad \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}$のとき
(1)$(x-3)(y-3)(z-3)$の値
(2)$x^3+y^3+z^3$の値
早稲田大学過去問題
$x^3+\frac{1}{x^3}=52$を満たす$x^4+\frac{1}{x^4}$の値
この動画を見る
同志社大学過去問題
$x+y+z=3 , \quad \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}$のとき
(1)$(x-3)(y-3)(z-3)$の値
(2)$x^3+y^3+z^3$の値
早稲田大学過去問題
$x^3+\frac{1}{x^3}=52$を満たす$x^4+\frac{1}{x^4}$の値
弘前大 三乗根の数の処理 高校数学 Japanese university entrance exam questions
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2005弘前大学過去問題
$a={}^3 \sqrt{\sqrt{\frac{65}{64}}+1} - {}^3 \sqrt{\sqrt{\frac{65}{64}}-1}$
(1)aは整数を係数とする3次方程式の解であることを示せ
(2)aは整数でないことを証明せよ。
この動画を見る
2005弘前大学過去問題
$a={}^3 \sqrt{\sqrt{\frac{65}{64}}+1} - {}^3 \sqrt{\sqrt{\frac{65}{64}}-1}$
(1)aは整数を係数とする3次方程式の解であることを示せ
(2)aは整数でないことを証明せよ。
東大 整数問題 高校数学 大学入試 Japanese university entrance exam questions Tokyo University
単元:
#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京大学過去問題
m自然数
$5m^4$の下2桁として現れる数をすべて求めよ。
この動画を見る
東京大学過去問題
m自然数
$5m^4$の下2桁として現れる数をすべて求めよ。