大阪大学
大阪大学
福田の数学〜大阪大学2025文系第3問〜放物線と接線が作る面積の最大値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
座標平面において、$y=x^2-1$で表される放物線を
$C$とする。
$C$上の点$P$における$C$の接線を$\ell$とする。
ただし、点$P$は$y$軸上にはないものとする。
$O$を原点とし、放物線$C$と線分$OP$をよび
$y$軸で囲まれた図形の面積を$S$、
放物線$C$と接線$\ell$および$y$軸で囲まれた図形の
面積を$T$とする。
$S-T$の最大値を求めよ。
$2025$年大阪大学文系過去問題
この動画を見る
$\boxed{3}$
座標平面において、$y=x^2-1$で表される放物線を
$C$とする。
$C$上の点$P$における$C$の接線を$\ell$とする。
ただし、点$P$は$y$軸上にはないものとする。
$O$を原点とし、放物線$C$と線分$OP$をよび
$y$軸で囲まれた図形の面積を$S$、
放物線$C$と接線$\ell$および$y$軸で囲まれた図形の
面積を$T$とする。
$S-T$の最大値を求めよ。
$2025$年大阪大学文系過去問題
福田の数学〜大阪大学2025文系第2問〜漸化式と数列の和

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
次の条件によって定められる数列$\{ a_n\}$がある。
$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$
(1)正の整数$k,\ell$に対して
$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$
が成り立つことを示せ。
(2)正の整数$m$に対して
$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$
が成り立つことを示せ。
$2025$年大阪大学文系過去問題
この動画を見る
$\boxed{2}$
次の条件によって定められる数列$\{ a_n\}$がある。
$a_1=1,a_{n+1}=\dfrac{2n-1}{2n}a_n \quad (n=1,2,3,\cdots)$
(1)正の整数$k,\ell$に対して
$\dfrac{k}{k+\ell-1}a_{k+1}a_{\ell}+\dfrac{\ell}{k+\ell-1}a_ka_{\ell+1}=a_ka_{\ell}$
が成り立つことを示せ。
(2)正の整数$m$に対して
$\displaystyle \sum_{k=1}^{m} a_ka_{m-K+1}=1$
が成り立つことを示せ。
$2025$年大阪大学文系過去問題
福田の数学〜大阪大学2025理系第5問〜確率漸化式

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
投げたときに表と裏の出る確率が
それぞれ$\dfrac{1}{2}$のコインがある。
$A,B,C$の$3$文字を$BAC$のように$1$個ずつ
すべて並べて得られる文字列に対して、
コインを投げて次の操作を行う。
・表がで出たら文字列の左から$1$文字目と
$2$文字目を入れかえる。
・裏がで出たら文字列の左から$2$文字目と
$3$文字目を入れかえる。
例えば、文字列が$BAC$であるときに、
$2$回続けてコインを投げて表、裏の順に出た
とすると、文字列は$BAC$から$ABC$を経て
$ACB$となる。
最初の文字列は$ABC$であるとする。
コインを$n$回続けて投げたあとの文字列が
$ABC$である確率を$p_n$とし、
$BCA$である確率を$q_n$とする。
(1)$k$を正の整数とするとき、
$p_{2k}-q_{2k}$を求めよ。
(2)$n$を正の整数とするとき、
$p_n$を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{5}$
投げたときに表と裏の出る確率が
それぞれ$\dfrac{1}{2}$のコインがある。
$A,B,C$の$3$文字を$BAC$のように$1$個ずつ
すべて並べて得られる文字列に対して、
コインを投げて次の操作を行う。
・表がで出たら文字列の左から$1$文字目と
$2$文字目を入れかえる。
・裏がで出たら文字列の左から$2$文字目と
$3$文字目を入れかえる。
例えば、文字列が$BAC$であるときに、
$2$回続けてコインを投げて表、裏の順に出た
とすると、文字列は$BAC$から$ABC$を経て
$ACB$となる。
最初の文字列は$ABC$であるとする。
コインを$n$回続けて投げたあとの文字列が
$ABC$である確率を$p_n$とし、
$BCA$である確率を$q_n$とする。
(1)$k$を正の整数とするとき、
$p_{2k}-q_{2k}$を求めよ。
(2)$n$を正の整数とするとき、
$p_n$を求めよ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第4問〜不等式の証明と関数の極限

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
次の問いに答えよ。
(1)$t\gt 0$のとき
$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$
が成り立つことを示せ。
(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。
(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。
$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$
を示せ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{4}$
次の問いに答えよ。
(1)$t\gt 0$のとき
$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$
が成り立つことを示せ。
(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。
(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。
$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$
を示せ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第3問〜空間図形と最大最小の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。
$\angle OAP=30°$かつ$y\geqq 0$を満たすように
点$P$が動くとき、
$(x+1)(y+1)$の最大値と最小値を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{3}$
座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。
$\angle OAP=30°$かつ$y\geqq 0$を満たすように
点$P$が動くとき、
$(x+1)(y+1)$の最大値と最小値を求めよ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第2問〜3次関数の極値と変曲点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$p$と$m$を実数とし、
関数$f(x)=x^3+3px^2+3mx$は
$x=\alpha$で極大値をとり、
$x=\beta$で極小値をとるとする。
(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。
(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を
満たしながら動くとき、
曲線$y=f(x)$の変曲点の軌跡を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{2}$
$p$と$m$を実数とし、
関数$f(x)=x^3+3px^2+3mx$は
$x=\alpha$で極大値をとり、
$x=\beta$で極小値をとるとする。
(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。
(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を
満たしながら動くとき、
曲線$y=f(x)$の変曲点の軌跡を求めよ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第1問〜平面図形とベクトルの証明

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
平面上の三角形$OAB$を考える。
$\angle AOB$は鋭角、$OA=3,OB=t$とする。
また、点$A$から直線$OB$に下ろした垂線と
直線$OB$の交点を$C$とし、$OC=1$とする。
線分$AB$を$2:1$に内分する点を$P$、点$A$から
直線$OP$に下ろした垂線と直線$OB$との交点を
$R$とする。
(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。
(2)線分$OR$の長さを$t$を用いて表せ。
(3)線分$OB$の中点を$M$とする。
点$R$が線分$MB$上にあるとき、
$t$のとりうる値の範囲を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{1}$
平面上の三角形$OAB$を考える。
$\angle AOB$は鋭角、$OA=3,OB=t$とする。
また、点$A$から直線$OB$に下ろした垂線と
直線$OB$の交点を$C$とし、$OC=1$とする。
線分$AB$を$2:1$に内分する点を$P$、点$A$から
直線$OP$に下ろした垂線と直線$OB$との交点を
$R$とする。
(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。
(2)線分$OR$の長さを$t$を用いて表せ。
(3)線分$OB$の中点を$M$とする。
点$R$が線分$MB$上にあるとき、
$t$のとりうる値の範囲を求めよ。
$2025$年大阪大学理系過去問題
各大学で頻出の典型的な問題!基本的でありながらどの大学でも出題されます【大阪大学】【数学 入試問題】

単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
aを実数とする。曲線y=e^x上の各点における法線のうちで、点p(a,3)を通るものの個数をn(a)とする。n(a)を求めよ。
この動画を見る
aを実数とする。曲線y=e^x上の各点における法線のうちで、点p(a,3)を通るものの個数をn(a)とする。n(a)を求めよ。
福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#大阪大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
この動画を見る
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
福田の数学〜大阪大学2024年文系第1問〜絶対値付き放物線と直線で囲まれた2つの面積が等しい条件

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線$y$=|$x^2-1$|を$C$、直線$y$=$2a(x+1)$を$l$とする。ただし、$a$は0<$a$<1を満たす実数とする。
(1)曲線$C$と直線$l$の共有点の座標を全て求めよ。
(2)曲線$C$と直線$l$で囲まれた2つの部分の面積が等しくなる$a$の値を求めよ。
この動画を見る
$\Large\boxed{1}$ 曲線$y$=|$x^2-1$|を$C$、直線$y$=$2a(x+1)$を$l$とする。ただし、$a$は0<$a$<1を満たす実数とする。
(1)曲線$C$と直線$l$の共有点の座標を全て求めよ。
(2)曲線$C$と直線$l$で囲まれた2つの部分の面積が等しくなる$a$の値を求めよ。
福田の数学〜大阪大学2024年理系第4問〜回転体の体積

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$>1とする。$xy$平面において、点($a$, 0)を中心とする半径1の円を$C$とする。
(1)円$C$の$x$≧$a$の部分と$y$軸および2直線$y$=1, $y$=-1で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V_1$を求めよ。
(2)円$C$で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする。(1)における$V_1$について、$V_1$=$2V_2$となる$a$の値を求めよ。
この動画を見る
$\Large\boxed{4}$ $a$>1とする。$xy$平面において、点($a$, 0)を中心とする半径1の円を$C$とする。
(1)円$C$の$x$≧$a$の部分と$y$軸および2直線$y$=1, $y$=-1で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V_1$を求めよ。
(2)円$C$で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする。(1)における$V_1$について、$V_1$=$2V_2$となる$a$の値を求めよ。
福田の数学〜大阪大学2024年理系第3問〜ねじれの位置にある2直線に直交する直線が1本しかない証明

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間内の2直線$l$, $m$はねじれの位置にあるとする。$l$と$m$の両方に直交する直線がただ1つ存在することを示せ。
この動画を見る
$\Large\boxed{3}$ 空間内の2直線$l$, $m$はねじれの位置にあるとする。$l$と$m$の両方に直交する直線がただ1つ存在することを示せ。
福田の数学〜大阪大学2024年理系第2問〜複素数の表す領域

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を複素数とし、複素数$z$に対して
$f(z)$=$z$+$\alpha z$+$\beta$
とおく。$\alpha$, $\beta$は
|$f(z)$-3|≦1 かつ |$f(i)$-1|≦3
を満たしながら動く。ただし、$i$は虚数単位である。
(1)$f(1+i)$がとりうる値の範囲を求め、複素数平面上に図示せよ。
(2)$f(1+i)$=0であるとき、$\alpha$, $\beta$の値を求めよ。
この動画を見る
$\Large\boxed{2}$ $\alpha$, $\beta$を複素数とし、複素数$z$に対して
$f(z)$=$z$+$\alpha z$+$\beta$
とおく。$\alpha$, $\beta$は
|$f(z)$-3|≦1 かつ |$f(i)$-1|≦3
を満たしながら動く。ただし、$i$は虚数単位である。
(1)$f(1+i)$がとりうる値の範囲を求め、複素数平面上に図示せよ。
(2)$f(1+i)$=0であるとき、$\alpha$, $\beta$の値を求めよ。
福田の数学〜大阪大学2024年理系第1問〜方程式の解と極限

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数$n$に対して、関数$f_n(x)$を
$f_n(x)$=1-$\displaystyle\frac{1}{2}e^{nx}$+$\displaystyle\cos\frac{x}{3}$ ($x$≧0)
で定める。ただし、$e$は自然対数の底である。
(1)方程式$f_n(x)$=0は、ただ1つの実数解をもつことを示せ。
(2)(1)における実数解を$a_n$とおくとき、極限値$\displaystyle\lim_{n \to \infty}a_n$ を求めよ。
(3)極限値$\displaystyle\lim_{n \to \infty}na_n$ を求めよ。
この動画を見る
$\Large\boxed{1}$ 自然数$n$に対して、関数$f_n(x)$を
$f_n(x)$=1-$\displaystyle\frac{1}{2}e^{nx}$+$\displaystyle\cos\frac{x}{3}$ ($x$≧0)
で定める。ただし、$e$は自然対数の底である。
(1)方程式$f_n(x)$=0は、ただ1つの実数解をもつことを示せ。
(2)(1)における実数解を$a_n$とおくとき、極限値$\displaystyle\lim_{n \to \infty}a_n$ を求めよ。
(3)極限値$\displaystyle\lim_{n \to \infty}na_n$ を求めよ。
【高校数学】19回目にして遂に計算ミス発生!?毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
この動画を見る
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
動く2点の距離の最小値【大阪大学】【数学 入試問題】

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$
点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。
大阪大学過去問
この動画を見る
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$
点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。
大阪大学過去問
(誘導あり)ゴリゴリの計算問題【大阪大学】【数学 入試問題】

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$f(x)=2\log (1+e^x)-x-\log 2$
のとき
$\displaystyle \int_{0}^{ \log 2 } (x-\log 2)e^{-f(x)} dx$
を求めよ
大阪大過去問
この動画を見る
$f(x)=2\log (1+e^x)-x-\log 2$
のとき
$\displaystyle \int_{0}^{ \log 2 } (x-\log 2)e^{-f(x)} dx$
を求めよ
大阪大過去問
微分の超頻出の問題!どこで最大値を取るかしっかり考えよう【大阪大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数a,xに対して,
y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。
(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。
(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。
大阪大過去問
この動画を見る
正の実数a,xに対して,
y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。
(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。
(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。
大阪大過去問
意外と差がつく?しっかりと取りたい問題です【大阪大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#三角関数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
a,bを実数とする。θについての方程式$\cos 2θ=a\ sin θ+b$が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ。
大阪大過去問
この動画を見る
a,bを実数とする。θについての方程式$\cos 2θ=a\ sin θ+b$が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ。
大阪大過去問
福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。
2023大阪大学文系過去問
この動画を見る
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。
2023大阪大学文系過去問
福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式
$\cos 2θ =a\sin θ +b$
が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ
2023大阪大学文系過去問
この動画を見る
a,bを実数とする。θについての方程式
$\cos 2θ =a\sin θ +b$
が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ
2023大阪大学文系過去問
福田の数学〜大阪大学2023年理系第5問〜確率漸化式と整数の性質

単元:
#数A#大学入試過去問(数学)#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 1個のさいころをn回投げて、k回目に出た目を$a_k$とする。$b_n$を
$b_n$=$\displaystyle\sum_{k=1}^na_1^{n-k}a_k$
により定義し、b_nが7の倍数とする確率を$p_n$とする。
(1)$p_1$, $p_2$を求めよ。
(2)数列$\left\{p_n\right\}$の一般項を求めよ。
2023大阪大学理系過去問
この動画を見る
$\Large\boxed{5}$ 1個のさいころをn回投げて、k回目に出た目を$a_k$とする。$b_n$を
$b_n$=$\displaystyle\sum_{k=1}^na_1^{n-k}a_k$
により定義し、b_nが7の倍数とする確率を$p_n$とする。
(1)$p_1$, $p_2$を求めよ。
(2)数列$\left\{p_n\right\}$の一般項を求めよ。
2023大阪大学理系過去問
福田の数学〜大阪大学2023年理系第4問〜空間ベクトルと軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
a,b を$a^2+b^2>1$かつ b≠0 をみたす実数の定数とする。
座標空間のA (a,0,b) と点 P(x, y, 0) をとる。
点O(0, 0, 0) を通り直線APと垂直な平面をαとし、平面と直線AP との交点をQとする。
$(\overrightarrow{ AP }・\overrightarrow{ AO })^2=|\overrightarrow{ AP }|^2|\overrightarrow{ AQ }|^2$が成り立つことを示せ。
$|\overrightarrow{ OQ }|^2=1$ をみたすように点P(x,y,0) が xy平面上を動くとき、点Pの軌跡を求めよ。
2023大阪大学理系過去問
この動画を見る
a,b を$a^2+b^2>1$かつ b≠0 をみたす実数の定数とする。
座標空間のA (a,0,b) と点 P(x, y, 0) をとる。
点O(0, 0, 0) を通り直線APと垂直な平面をαとし、平面と直線AP との交点をQとする。
$(\overrightarrow{ AP }・\overrightarrow{ AO })^2=|\overrightarrow{ AP }|^2|\overrightarrow{ AQ }|^2$が成り立つことを示せ。
$|\overrightarrow{ OQ }|^2=1$ をみたすように点P(x,y,0) が xy平面上を動くとき、点Pの軌跡を求めよ。
2023大阪大学理系過去問
福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。
2023大阪大学理系過去問
この動画を見る
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。
2023大阪大学理系過去問
福田の数学〜大阪大学2023年理系第2問〜ベクトルと領域

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。
2023大阪大学理系過去問
この動画を見る
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。
2023大阪大学理系過去問
福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$
2023大阪大学理系過去問
この動画を見る
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$
2023大阪大学理系過去問
福田の1.5倍速演習〜合格する重要問題091〜大阪大学2018年度理系第1問〜不等式の証明と関数の値域

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。
2018大阪大学理系過去問
この動画を見る
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。
2018大阪大学理系過去問
指数・対数 × 整数問題!落としたくない問題です【大阪大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。
(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。
大阪大過去問
この動画を見る
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。
(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。
大阪大過去問
福田の1.5倍速演習〜合格する重要問題055〜大阪大学2017年度理系第5問〜回転体と回転体の交わりの部分の体積

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。
2017大阪大学理系過去問
この動画を見る
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。
2017大阪大学理系過去問
福田の1.5倍速演習〜合格する重要問題054〜大阪大学2017年度文系第1問〜放物線とx軸で囲まれた面積

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $b,c$を実数、$q$を正の実数とする。放物線$P:y=-x^2+bx+c$の頂点の$y$座標が
$q$のとき、放物線$P$と$x$軸で囲まれた部分の面積$S$を$q$を用いて表せ。
2017大阪大学文系過去問
この動画を見る
$\Large{\boxed{1}}$ $b,c$を実数、$q$を正の実数とする。放物線$P:y=-x^2+bx+c$の頂点の$y$座標が
$q$のとき、放物線$P$と$x$軸で囲まれた部分の面積$S$を$q$を用いて表せ。
2017大阪大学文系過去問
