大阪大学 - 質問解決D.B.(データベース)

大阪大学

福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
この動画を見る 

福田の数学〜大阪大学2024年文系第1問〜絶対値付き放物線と直線で囲まれた2つの面積が等しい条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線$y$=|$x^2-1$|を$C$、直線$y$=$2a(x+1)$を$l$とする。ただし、$a$は0<$a$<1を満たす実数とする。
(1)曲線$C$と直線$l$の共有点の座標を全て求めよ。
(2)曲線$C$と直線$l$で囲まれた2つの部分の面積が等しくなる$a$の値を求めよ。
この動画を見る 

福田の数学〜大阪大学2024年理系第4問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$>1とする。$xy$平面において、点($a$, 0)を中心とする半径1の円を$C$とする。
(1)円$C$の$x$≧$a$の部分と$y$軸および2直線$y$=1, $y$=-1で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V_1$を求めよ。
(2)円$C$で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする。(1)における$V_1$について、$V_1$=$2V_2$となる$a$の値を求めよ。
この動画を見る 

福田の数学〜大阪大学2024年理系第3問〜ねじれの位置にある2直線に直交する直線が1本しかない証明

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間内の2直線$l$, $m$はねじれの位置にあるとする。$l$と$m$の両方に直交する直線がただ1つ存在することを示せ。
この動画を見る 

福田の数学〜大阪大学2024年理系第2問〜複素数の表す領域

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を複素数とし、複素数$z$に対して
$f(z)$=$z$+$\alpha z$+$\beta$
とおく。$\alpha$, $\beta$は
|$f(z)$-3|≦1 かつ |$f(i)$-1|≦3
を満たしながら動く。ただし、$i$は虚数単位である。
(1)$f(1+i)$がとりうる値の範囲を求め、複素数平面上に図示せよ。
(2)$f(1+i)$=0であるとき、$\alpha$, $\beta$の値を求めよ。
この動画を見る 

福田の数学〜大阪大学2024年理系第1問〜方程式の解と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数$n$に対して、関数$f_n(x)$を
$f_n(x)$=1-$\displaystyle\frac{1}{2}e^{nx}$+$\displaystyle\cos\frac{x}{3}$ ($x$≧0)
で定める。ただし、$e$は自然対数の底である。
(1)方程式$f_n(x)$=0は、ただ1つの実数解をもつことを示せ。
(2)(1)における実数解を$a_n$とおくとき、極限値$\displaystyle\lim_{n \to \infty}a_n$ を求めよ。
(3)極限値$\displaystyle\lim_{n \to \infty}na_n$ を求めよ。
この動画を見る 

【高校数学】19回目にして遂に計算ミス発生!?毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
この動画を見る 

動く2点の距離の最小値【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$C_1:x^2+\displaystyle \frac{y^2}{a^2}=1,C_2:y=2ax-3a$

点Pが$C_1$,点Qが$C_2$上を動く。
線分 PQ の長さの最小値をαを用いて表せ。

大阪大学過去問
この動画を見る 

(誘導あり)ゴリゴリの計算問題【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$f(x)=2\log (1+e^x)-x-\log 2$
のとき


$\displaystyle \int_{0}^{ \log 2 } (x-\log 2)e^{-f(x)} dx$

を求めよ

大阪大過去問
この動画を見る 

微分の超頻出の問題!どこで最大値を取るかしっかり考えよう【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数a,xに対して,

y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。

(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。

(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。

大阪大過去問
この動画を見る 

意外と差がつく?しっかりと取りたい問題です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#三角関数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
a,bを実数とする。θについての方程式$\cos 2θ=a\ sin θ+b$が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ。

大阪大過去問
この動画を見る 

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 

福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式

$\cos 2θ =a\sin θ +b$

が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ

2023大阪大学文系過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第5問〜確率漸化式と整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 1個のさいころをn回投げて、k回目に出た目を$a_k$とする。$b_n$を
$b_n$=$\displaystyle\sum_{k=1}^na_1^{n-k}a_k$
により定義し、b_nが7の倍数とする確率を$p_n$とする。
(1)$p_1$, $p_2$を求めよ。
(2)数列$\left\{p_n\right\}$の一般項を求めよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第4問〜空間ベクトルと軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,b を$a^2+b^2>1$かつ b≠0 をみたす実数の定数とする。
座標空間のA (a,0,b) と点 P(x, y, 0) をとる。
点O(0, 0, 0) を通り直線APと垂直な平面をαとし、平面と直線AP との交点をQとする。

$(\overrightarrow{ AP }・\overrightarrow{ AO })^2=|\overrightarrow{ AP }|^2|\overrightarrow{ AQ }|^2$が成り立つことを示せ。

$|\overrightarrow{ OQ }|^2=1$ をみたすように点P(x,y,0) が xy平面上を動くとき、点Pの軌跡を求めよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第2問〜ベクトルと領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の3点O,A,Bが
|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$+2$\overrightarrow{OB}$|=1 かつ (2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+$\overrightarrow{OB}$)=$\displaystyle\frac{1}{3}$
を満たすとする。
(1)(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)・($\overrightarrow{OA}$+2$\overrightarrow{OB}$)を求めよ。
(2)平面上の点Pが
|$\overrightarrow{OP}$ー($\overrightarrow{OA}$+$\overrightarrow{OB}$)|≦$\frac{1}{3}$ かつ $\overrightarrow{OP}$・(2$\overrightarrow{OA}$+$\overrightarrow{OB}$)≦$\frac{1}{3}$
を満たすように動くとき、|$\overrightarrow{OP}$|の最大値と最小値を求めよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$

2023大阪大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題091〜大阪大学2018年度理系第1問〜不等式の証明と関数の値域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。

2018大阪大学理系過去問
この動画を見る 

指数・対数 × 整数問題!落としたくない問題です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。

(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。

大阪大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題055〜大阪大学2017年度理系第5問〜回転体と回転体の交わりの部分の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。

2017大阪大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題054〜大阪大学2017年度文系第1問〜放物線とx軸で囲まれた面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $b,c$を実数、$q$を正の実数とする。放物線$P:y=-x^2+bx+c$の頂点の$y$座標が
$q$のとき、放物線$P$と$x$軸で囲まれた部分の面積$S$を$q$を用いて表せ。

2017大阪大学文系過去問
この動画を見る 

3通りで解説!xとyを「あれ」に・・・【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$x,y$が$|x|≦1$と$|y|≦1$を満たすとき,不等式

$0≦x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2}$
$≦1$

が成り立つことを示せ。

大阪大過去問


この動画を見る 

福田の1.5倍速演習〜合格する重要問題025〜大阪大学2016年度理系数学第3問〜回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点Oを中心とする半径rの円と放物線$y=\sqrt2(x-1)^2$
は、ただ1つの共有点(a,b)をもつとする。
(1)a,b,rの値をそれぞれ求めよ。
(2)連立不等式
$a \leqq x \leqq 1, 0 \leqq y \leqq \sqrt2(x-1)^2, x^2+y^2 \geqq r^2$
の表す領域をx軸のまわりに1回転してできる回転体の体積を求めよ。

2016大阪大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題007〜大阪大学2015年文系数学第1問〜不等式の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#三角関数#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数x,yが$|x| \leqq 1$と$|y| \leqq 1$を満たすとき、不等式
$0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1$
が成り立つことを示せ。

2015大阪大学文系過去問
この動画を見る 

数Ⅱ微分の良問です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$点(0,1)を通り曲線$y=x^3-ax^2$に接する直線がちょうど2本存在するとき,実数$a$の値と2本の接線の方程式を求めよ。

大阪大過去問
この動画を見る 

数Ⅱ微分の良問です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$点(0,1)を通り曲線$y=x^3-ax^2$に接する直線がちょうど2本存在するとき,実数$a$の値と2本の接線の方程式を求めよ。

大阪大過去問
この動画を見る 

対数の良問!値を上手く自分で評価できるかがポイント【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数m,nと$0<a\dfrac{2}{3}$が成り立つことを示せ。

大阪大過去問
この動画を見る 

阪大の証明問題!解けますか?【数学 入試問題】【大阪大学 理系】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の自然数とする。三角形$ABC$において,辺$AB$の長さを$c$,辺$CA$の長さを$b$で表す。$ \angle ACB=n \angle ABC$であるとき,$ c<nb $を示せ。

大阪大理系過去問
この動画を見る 

阪大の証明問題!ぜひとも取りたい問題【数学 入試問題】【大阪大学 文系】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,辺$AB$の長さを$c$,辺$CA$の長さを$b$で表す。

$\angle ACB=3\angle ABC$であるとき,$c<3b$を示せ。

大阪大過去問
この動画を見る 
PAGE TOP