学校別大学入試過去問解説(数学)
名古屋大 微分積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=a-(a^3-1)x^2-a^2x^4$ $(a \gt 0)$
(1)
$f(x)$のグラフの概形は?
(2)
$f(x)$と$x$軸とで囲まれる面積を$S(a),\displaystyle \lim_{ a \to \infty }S(a)$
出典:1974年名古屋大学 過去問
この動画を見る
$f(x)=a-(a^3-1)x^2-a^2x^4$ $(a \gt 0)$
(1)
$f(x)$のグラフの概形は?
(2)
$f(x)$と$x$軸とで囲まれる面積を$S(a),\displaystyle \lim_{ a \to \infty }S(a)$
出典:1974年名古屋大学 過去問
横浜市立大(医)
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け
出典:2000年横浜市立大学 過去問
この動画を見る
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け
出典:2000年横浜市立大学 過去問
連続k個の自然数の積はk!の倍数&整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は奇数
$n^5+2n^3-3n$は96の倍数であることを証明せよ
連続$k$個の自然数の積は$k!$の倍数である
この動画を見る
$n$は奇数
$n^5+2n^3-3n$は96の倍数であることを証明せよ
連続$k$個の自然数の積は$k!$の倍数である
京都大 複素数
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{2Z+2i}{Z+2i}=\bar{ Z }$を満たす複素数$Z$をすべて求めよ
出典:2005年京都大学 過去問
この動画を見る
$\displaystyle \frac{2Z+2i}{Z+2i}=\bar{ Z }$を満たす複素数$Z$をすべて求めよ
出典:2005年京都大学 過去問
神戸大 積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
全ての実数$x$で$f(x)=|x^2-1|+\displaystyle \int_{0}^{ 2 } f(x) dx$が成り立つ
(1)
$f(x)$を求めよ
(2)
$\displaystyle \int_{0}^{ a } f(x) dx=\displaystyle \frac{4}{3}$を満たす正の実数$a$
出典:1981年神戸大学 過去問
この動画を見る
全ての実数$x$で$f(x)=|x^2-1|+\displaystyle \int_{0}^{ 2 } f(x) dx$が成り立つ
(1)
$f(x)$を求めよ
(2)
$\displaystyle \int_{0}^{ a } f(x) dx=\displaystyle \frac{4}{3}$を満たす正の実数$a$
出典:1981年神戸大学 過去問
名古屋大 微分 複雑な方程式の解
単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ
(2)
$2^x=x^2$実数解の個数を求めよ
(3)
$2^x=x^2$の有理数解をすべて求めよ
出典:2015年名古屋大学 過去問
この動画を見る
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ
(2)
$2^x=x^2$実数解の個数を求めよ
(3)
$2^x=x^2$の有理数解をすべて求めよ
出典:2015年名古屋大学 過去問
福井大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k,n$は自然数 $a_{1}=k$
$a_{n+1}=2a_{n}+1$
(1)
$a_{n+4}-a_{n}$は15の倍数であることを示せ
(2)
$a_{2010}$が15の倍数となる最小の$k$の値は?
出典:福井大学 過去問
この動画を見る
$k,n$は自然数 $a_{1}=k$
$a_{n+1}=2a_{n}+1$
(1)
$a_{n+4}-a_{n}$は15の倍数であることを示せ
(2)
$a_{2010}$が15の倍数となる最小の$k$の値は?
出典:福井大学 過去問
早稲田大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=a,a_{n}=3^n-5a_{n-1}$ $(n \geqq 2)$
(1)
一般項$a_{n}$を求めよ
(2)
任意の自然数$n$に対し、$a_{n+1} \gt a_{n}$が成り立つときの$a$の値を求めよ
出典:2000年早稲田大学 過去問
この動画を見る
$a_{1}=a,a_{n}=3^n-5a_{n-1}$ $(n \geqq 2)$
(1)
一般項$a_{n}$を求めよ
(2)
任意の自然数$n$に対し、$a_{n+1} \gt a_{n}$が成り立つときの$a$の値を求めよ
出典:2000年早稲田大学 過去問
名古屋大 数列 不等式の証明
単元:
#大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,a_{n+1}=\sqrt{ a_{n}^2+5 }-1$ ($n$自然数)
(1)
$0 \leqq a_{n} \lt 2$を示せ
(2)
$a_{n} \lt a_{n+1}$を示せ
出典:名古屋大学 過去問
この動画を見る
$a_{1}=0,a_{n+1}=\sqrt{ a_{n}^2+5 }-1$ ($n$自然数)
(1)
$0 \leqq a_{n} \lt 2$を示せ
(2)
$a_{n} \lt a_{n+1}$を示せ
出典:名古屋大学 過去問
慶應義塾大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$
(1)
$a_{n}$が最大となる$n$
(2)
$b_{n}$が最大となる$n$
出典:慶應義塾 過去問
この動画を見る
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$
(1)
$a_{n}$が最大となる$n$
(2)
$b_{n}$が最大となる$n$
出典:慶應義塾 過去問
南山大 n!0が100個並ぶ
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。
出典:南山大学 過去問
この動画を見る
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。
出典:南山大学 過去問
名古屋大 双曲線 東大大学院数学科卒 杉山さん
単元:
#大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=\displaystyle \frac{a^x+a^{-x}}{a^x-a^{-x}}$
$a \gt 0,a \neq 1$
(1)
$f(x)$のとりうる範囲を求めよ
(2)
$f(x)-bx=0$が解をもつ条件を求めよ
出典:1994年名古屋大学 過去問
この動画を見る
$f(x)=\displaystyle \frac{a^x+a^{-x}}{a^x-a^{-x}}$
$a \gt 0,a \neq 1$
(1)
$f(x)$のとりうる範囲を求めよ
(2)
$f(x)-bx=0$が解をもつ条件を求めよ
出典:1994年名古屋大学 過去問
Prove π is larger than 3.05 ~Tokyo University Entrance Examination~
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\pi$が3.05より大きいことを証明せよ
出典:東京大学 入試問題
この動画を見る
$\pi$が3.05より大きいことを証明せよ
出典:東京大学 入試問題
九州大 3次方程式:2次方程式 有理数解
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=\cos20^{ \circ }+i \sin 20^{ \circ }$
$\alpha = Z+\bar{ Z }$←共役な複素数
(1)
$\alpha$が解となる整数係数3次方程式は?
(2)
(1)の3次方程式は、3つの実数解をもち、そのすべては有理数でないことを示せ
(3)
有理数係数の2次方程式で$\alpha$を解に持つものはないことを示せ
出典:2000年九州大学 過去問
この動画を見る
$Z=\cos20^{ \circ }+i \sin 20^{ \circ }$
$\alpha = Z+\bar{ Z }$←共役な複素数
(1)
$\alpha$が解となる整数係数3次方程式は?
(2)
(1)の3次方程式は、3つの実数解をもち、そのすべては有理数でないことを示せ
(3)
有理数係数の2次方程式で$\alpha$を解に持つものはないことを示せ
出典:2000年九州大学 過去問
広島大 対数
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$log_{2}3$は無理数、証明せよ
(2)
$p,q$は異なる自然数
$p$ $log_{2}3$と$q$ $log_{2}3$の小数部分は異なる。
証明せよ
(3)
$log_{2}3$の小数第一位の数を求めよ
出典:広島大学 過去問
この動画を見る
(1)
$log_{2}3$は無理数、証明せよ
(2)
$p,q$は異なる自然数
$p$ $log_{2}3$と$q$ $log_{2}3$の小数部分は異なる。
証明せよ
(3)
$log_{2}3$の小数第一位の数を求めよ
出典:広島大学 過去問
東工大 極限 東大大学院 数学科卒 杉山さん
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ
出典:1992年東京工業大学 過去問
この動画を見る
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ
出典:1992年東京工業大学 過去問
福井県立大 不等式の証明
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#福井県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は正の実数
$\displaystyle \frac{abc}{(ab+1)(bc+1)(ca+1)} \leqq \displaystyle \frac{1}{8}$を証明せよ
等号式立条件も証明せよ
出典:福井県立大学 過去問
この動画を見る
$a,b,c$は正の実数
$\displaystyle \frac{abc}{(ab+1)(bc+1)(ca+1)} \leqq \displaystyle \frac{1}{8}$を証明せよ
等号式立条件も証明せよ
出典:福井県立大学 過去問
千葉大 整式
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数
$a \neq b,c \neq d$
自然数$p,q$が存在することを示せ
出典:2004年千葉大学 過去問
この動画を見る
$a,b,c,d$は自然数
$a \neq b,c \neq d$
自然数$p,q$が存在することを示せ
出典:2004年千葉大学 過去問
大阪教育大 複雑な3乗根の外し方
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
この動画を見る
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
早稲田大学 数列、複素数
単元:
#大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$
(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ
(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値
(3)
$a_{n}$は5の倍数でないことを示せ
(4)
$Z^n$は実数でないことを示せ
出典:2013年早稲田大学 過去問
この動画を見る
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$
(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ
(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値
(3)
$a_{n}$は5の倍数でないことを示せ
(4)
$Z^n$は実数でないことを示せ
出典:2013年早稲田大学 過去問
東大卒のもっちゃんと数学Vol.7 加法定理を証明しよう(東大過去問)
単元:
#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
加法定理を証明 解説動画です
$\cos (\alpha+\beta)=\cos \alpha \cos\beta -\sin \alpha \sin\beta$
この動画を見る
加法定理を証明 解説動画です
$\cos (\alpha+\beta)=\cos \alpha \cos\beta -\sin \alpha \sin\beta$
立命館大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ
出典:立命館大学 過去問
この動画を見る
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ
出典:立命館大学 過去問
慈恵医大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数$P$は素数、$a,b,c$自然数
$a$は素数
$a(ab-p^2)=C^2,b \leqq 2C$を満たす
(1)
$(a,b,c)$の組の個数を$P$を用いて表せ
(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ
出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る
実数$P$は素数、$a,b,c$自然数
$a$は素数
$a(ab-p^2)=C^2,b \leqq 2C$を満たす
(1)
$(a,b,c)$の組の個数を$P$を用いて表せ
(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ
出典:2017年東京慈恵会医科大学附属病院 過去問
京都大学 サイコロ確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率
(2)
$x=5$となる確率
出典:2017年京都大学 過去問
この動画を見る
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率
(2)
$x=5$となる確率
出典:2017年京都大学 過去問
名古屋大 微分積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#名古屋大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0,f(x)=ax^2,g(x)=x(x-4)^2$
(1)
$f(x)$と$g(x)$は相異なる3点で交わることを示せ
(2)
$f(x)$と$g(x)$で囲まれる2つの部分の面積が等しくなる$a$の値を求めよ
出典:名古屋大学 過去問
この動画を見る
$a \gt 0,f(x)=ax^2,g(x)=x(x-4)^2$
(1)
$f(x)$と$g(x)$は相異なる3点で交わることを示せ
(2)
$f(x)$と$g(x)$で囲まれる2つの部分の面積が等しくなる$a$の値を求めよ
出典:名古屋大学 過去問
学習院大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m^2=2^n+1$を満たす自然数$(m,n)$をすべて求めよ
出典:学習院大学 過去問
この動画を見る
$m^2=2^n+1$を満たす自然数$(m,n)$をすべて求めよ
出典:学習院大学 過去問
新潟大 漸化式 証明
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
$a_{n}=\sqrt{ n^2+1 }-n$
(1)
$\displaystyle \frac{1}{2n+1} \lt a_{n} \lt \displaystyle \frac{1}{2n}$を示せ
(2)
$a_{n} \gt a_{n+1}$を示せ
(3)
$a_{n} \lt 0.03$となる最小の自然数$n$
出典:2013年新潟大学 過去問
この動画を見る
$n$自然数
$a_{n}=\sqrt{ n^2+1 }-n$
(1)
$\displaystyle \frac{1}{2n+1} \lt a_{n} \lt \displaystyle \frac{1}{2n}$を示せ
(2)
$a_{n} \gt a_{n+1}$を示せ
(3)
$a_{n} \lt 0.03$となる最小の自然数$n$
出典:2013年新潟大学 過去問
千葉大 漸化式 証明
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
この動画を見る
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
東大に合格する勉強法ー東大芸人大島さんが実践した方法
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
Morite2 English Channel
問題文全文(内容文):
東大芸人のXXCLUB大島さんとの対談動画です。
東大合格までの勉強法を紹介します!
勉強の参考にしましょう!
この動画を見る
東大芸人のXXCLUB大島さんとの対談動画です。
東大合格までの勉強法を紹介します!
勉強の参考にしましょう!
岡山県立大 整数問題 合同式
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
(1)
$n(n^2+5)$は6の倍数であることを示せ
(2)
$3^{6n}$を7で割ると余りが1であることを示せ
出典:2008年岡山県立大学 過去問
この動画を見る
$n$自然数
(1)
$n(n^2+5)$は6の倍数であることを示せ
(2)
$3^{6n}$を7で割ると余りが1であることを示せ
出典:2008年岡山県立大学 過去問