早稲田大学
福田の数学〜早稲田大学2023年人間科学部第7問〜空間ベクトルと回転体の体積
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 座標空間に点C(0,1,1)を中心とする半径1の球面Sがある。点P(0,0,3)からSに引いた接線と$xy$平面との交点をQとする。$\overrightarrow{PC}・\overrightarrow{PQ}$=$t|\overrightarrow{PQ}|$と表すとき、
$t$=$\boxed{\ \ テ \ \ }$である。点Qは楕円状にあり、この楕円を
$\displaystyle\frac{(x+b)^2}{a}$+$\displaystyle\frac{(y+d)^2}{c}$=1
とするとき、$a$=$\boxed{\ \ ト\ \ }$, $b$=$\boxed{\ \ ナ\ \ }$, $c$=$\boxed{\ \ ニ\ \ }$, $d$=$\boxed{\ \ ヌ\ \ }$ である。
また、点Pに光源があるとき、球面Sで光が当たる部分を点Rが動く。ただし、
球面Sは光を通さない。このとき線分PRが通過してできる図形の体積は
2$\pi$・$\displaystyle\frac{\boxed{ネ}+\boxed{ノ}\sqrt{\boxed{ハ}}}{\boxed{ヒ}}$
である。
この動画を見る
$\Large\boxed{7}$ 座標空間に点C(0,1,1)を中心とする半径1の球面Sがある。点P(0,0,3)からSに引いた接線と$xy$平面との交点をQとする。$\overrightarrow{PC}・\overrightarrow{PQ}$=$t|\overrightarrow{PQ}|$と表すとき、
$t$=$\boxed{\ \ テ \ \ }$である。点Qは楕円状にあり、この楕円を
$\displaystyle\frac{(x+b)^2}{a}$+$\displaystyle\frac{(y+d)^2}{c}$=1
とするとき、$a$=$\boxed{\ \ ト\ \ }$, $b$=$\boxed{\ \ ナ\ \ }$, $c$=$\boxed{\ \ ニ\ \ }$, $d$=$\boxed{\ \ ヌ\ \ }$ である。
また、点Pに光源があるとき、球面Sで光が当たる部分を点Rが動く。ただし、
球面Sは光を通さない。このとき線分PRが通過してできる図形の体積は
2$\pi$・$\displaystyle\frac{\boxed{ネ}+\boxed{ノ}\sqrt{\boxed{ハ}}}{\boxed{ヒ}}$
である。
福田の数学〜早稲田大学2023年人間科学部第6問〜関数の極値と回転体の体積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$y$=$e^x\sin x$は$x$=$a$(0<$a$<$\pi$)において極値を取る。このとき、
$a$=$\frac{\boxed{シ}}{\boxed{ス}}\pi$である。また、曲線$y$=$e^x\sin x$(0≦$x$≦$a$)と直線$x$=$a$および$x$軸によって囲まれた図形を$x$軸のまわりに1回転してできる立体の体積Vは、
$p$=$\frac{\boxed{セ}}{\boxed{ソ}}$として、V=$\frac{\boxed{タ}e^{px}+\boxed{チ}}{\boxed{ツ}}\pi$
である。
この動画を見る
$\Large\boxed{6}$ 関数$y$=$e^x\sin x$は$x$=$a$(0<$a$<$\pi$)において極値を取る。このとき、
$a$=$\frac{\boxed{シ}}{\boxed{ス}}\pi$である。また、曲線$y$=$e^x\sin x$(0≦$x$≦$a$)と直線$x$=$a$および$x$軸によって囲まれた図形を$x$軸のまわりに1回転してできる立体の体積Vは、
$p$=$\frac{\boxed{セ}}{\boxed{ソ}}$として、V=$\frac{\boxed{タ}e^{px}+\boxed{チ}}{\boxed{ツ}}\pi$
である。
福田の数学〜早稲田大学2023年人間科学部第5問〜部分和を使った漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が
$S_n$=$(-1)^n$$a_n$-$\displaystyle\frac{1}{2^n}$ ($n$=1,2,3,...)
で表されるとする。$n$が偶数であるとき、
$a_n$=$\displaystyle\frac{\boxed{タ}}{\boxed{チ}}^n$
である。また、$S_1$+$S_2$+...+$S_{50}$の値は
$\frac{\boxed{ツ}}{\boxed{テ}・\boxed{ト}^{50}}$+$\frac{\boxed{ナ}}{\boxed{ニ}}$
である。ただし、$\boxed{チ}$, $\boxed{テ}$, $\boxed{ト}$, $\boxed{ニ}$はできるだけ小さな自然数とする。
この動画を見る
$\Large\boxed{5}$ 数列$\left\{a_n\right\}$の初項から第$n$項までの和$S_n$が
$S_n$=$(-1)^n$$a_n$-$\displaystyle\frac{1}{2^n}$ ($n$=1,2,3,...)
で表されるとする。$n$が偶数であるとき、
$a_n$=$\displaystyle\frac{\boxed{タ}}{\boxed{チ}}^n$
である。また、$S_1$+$S_2$+...+$S_{50}$の値は
$\frac{\boxed{ツ}}{\boxed{テ}・\boxed{ト}^{50}}$+$\frac{\boxed{ナ}}{\boxed{ニ}}$
である。ただし、$\boxed{チ}$, $\boxed{テ}$, $\boxed{ト}$, $\boxed{ニ}$はできるだけ小さな自然数とする。
福田の数学〜早稲田大学2023年人間科学部第4問〜絶対値の付いた2次関数とx分のyの最大値
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$を1以上の定数とする。点P($x$,$y$)は曲線$y$=$|x^2-5x+4|$上を動く点で、$x$座標は1≦$x$≦$a$を満たすものとする。このとき$\displaystyle\frac{y}{x}$の最大値が、定数$a$の値によらないような$a$の値の範囲は、
$\boxed{\ \ シ\ \ }$≦$a$≦$\boxed{\ \ ス\ \ }$+$\sqrt{\boxed{\ \ セ\ \ }}$
である。この範囲の$a$の値における$\displaystyle\frac{y}{x}$の最大値は$\boxed{\ \ ソ\ \ }$である。
この動画を見る
$\Large\boxed{4}$ $a$を1以上の定数とする。点P($x$,$y$)は曲線$y$=$|x^2-5x+4|$上を動く点で、$x$座標は1≦$x$≦$a$を満たすものとする。このとき$\displaystyle\frac{y}{x}$の最大値が、定数$a$の値によらないような$a$の値の範囲は、
$\boxed{\ \ シ\ \ }$≦$a$≦$\boxed{\ \ ス\ \ }$+$\sqrt{\boxed{\ \ セ\ \ }}$
である。この範囲の$a$の値における$\displaystyle\frac{y}{x}$の最大値は$\boxed{\ \ ソ\ \ }$である。
福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線を$l_1$とし、直線$l_1$に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は($\boxed{\ \ ク\ \ }$, $\boxed{\ \ ケ\ \ }$, $\boxed{\ \ コ\ \ }$)である。また、点Dを通り$l_1$と平行な直線を$l_2$とし、点Pが直線$l_2$上を、点Qが$xy$平面上の直線$y$=$-x$+4 上をそれぞれ自由に動くとき、$|\overrightarrow{PQ}|^2$の最小値は$\boxed{\ \ サ\ \ }$である。
この動画を見る
$\Large\boxed{3}$ 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線を$l_1$とし、直線$l_1$に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は($\boxed{\ \ ク\ \ }$, $\boxed{\ \ ケ\ \ }$, $\boxed{\ \ コ\ \ }$)である。また、点Dを通り$l_1$と平行な直線を$l_2$とし、点Pが直線$l_2$上を、点Qが$xy$平面上の直線$y$=$-x$+4 上をそれぞれ自由に動くとき、$|\overrightarrow{PQ}|^2$の最小値は$\boxed{\ \ サ\ \ }$である。
福田の数学〜早稲田大学2023年人間科学部第2問〜対数不等式
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 不等式
$\log_4(16-x^2-y^2)$≧$\displaystyle\frac{3}{2}$+2$\log_{16}(2-x)$
を満たす点P($x$,$y$)の中で、$x$座標と$y$座標がともに整数であるものは$\boxed{\ \ オ\ \ }$個ある。このうち、$x$座標が最小となる点は($\boxed{\ \ カ\ \ }$, $\boxed{\ \ キ\ \ }$)である。
この動画を見る
$\Large\boxed{2}$ 不等式
$\log_4(16-x^2-y^2)$≧$\displaystyle\frac{3}{2}$+2$\log_{16}(2-x)$
を満たす点P($x$,$y$)の中で、$x$座標と$y$座標がともに整数であるものは$\boxed{\ \ オ\ \ }$個ある。このうち、$x$座標が最小となる点は($\boxed{\ \ カ\ \ }$, $\boxed{\ \ キ\ \ }$)である。
福田の数学〜早稲田大学2023年人間科学部第1問(3)〜指数不等式
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)$5^{n+5}$>$11^n$ を満たす自然数$n$は$\boxed{\ \ エ\ \ }$個ある。
ただし、$log_511$=1.49 とする。
この動画を見る
$\Large\boxed{1}$ (3)$5^{n+5}$>$11^n$ を満たす自然数$n$は$\boxed{\ \ エ\ \ }$個ある。
ただし、$log_511$=1.49 とする。
福田の数学〜早稲田大学2023年人間科学部第1問(2)〜式の値と1の3乗根
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)$x^2$+$x$+1=0 のとき、$x^{20}$+$x$=$\boxed{\ \ ウ\ \ }$ である。
この動画を見る
$\Large\boxed{1}$ (2)$x^2$+$x$+1=0 のとき、$x^{20}$+$x$=$\boxed{\ \ ウ\ \ }$ である。
福田の数学〜早稲田大学2023年人間科学部第1問(1)〜互いに素な整数を選ぶ確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)2,3,4,...,13の12個の整数の中から異なる2個を無作為に取り出したとき、それら2個の整数が互いに素となる確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
この動画を見る
$\Large\boxed{1}$ (1)2,3,4,...,13の12個の整数の中から異なる2個を無作為に取り出したとき、それら2個の整数が互いに素となる確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
大学入試問題#612 早稲田大学(2021)
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
正の実数$x,y,z$が
$\displaystyle \frac{1}{x}+\displaystyle \frac{2}{y}+\displaystyle \frac{3}{z}=1$を満たすとき
$(x-1)(y-2)(z-3)$の最小値を求めよ
出典:2021年早稲田大学 入試問題
この動画を見る
正の実数$x,y,z$が
$\displaystyle \frac{1}{x}+\displaystyle \frac{2}{y}+\displaystyle \frac{3}{z}=1$を満たすとき
$(x-1)(y-2)(z-3)$の最小値を求めよ
出典:2021年早稲田大学 入試問題
大学入試問題#609「落とすと落ちる良問」 早稲田大学(2023) #整数問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$0 \lt x \leqq y \leqq z$
$xyz=x+y+z$を満たす整数$x,y,z$の組を求めよ
出典:2023年早稲田大学 入試問題
この動画を見る
$0 \lt x \leqq y \leqq z$
$xyz=x+y+z$を満たす整数$x,y,z$の組を求めよ
出典:2023年早稲田大学 入試問題
早稲田大 みんな大好きBBB
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{i=6}^{\infty} \dfrac{1800}{(n-5)(n-4)(n-1)n}$
これを求めよ。
早稲田大過去問
この動画を見る
$\displaystyle \sum_{i=6}^{\infty} \dfrac{1800}{(n-5)(n-4)(n-1)n}$
これを求めよ。
早稲田大過去問
7を書く回数?どのように考えますか?【早稲田大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
1から$10^{5}$=100000までのすべての整数を、順に十進法で書いたとすると、
数字を全部で何回書いたことになるか?答えよ.
早稲田大過去問
この動画を見る
1から$10^{5}$=100000までのすべての整数を、順に十進法で書いたとすると、
数字を全部で何回書いたことになるか?答えよ.
早稲田大過去問
早稲田の恒等式!この形は〇〇したくなりますよね【早稲田大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の整数$m$,定数関数でない整式$P(x)$である.
$\displaystyle\int_{0}^{x} {P(t)}^m dt=P(x^3)-P(0)$
$P(x)$を求めよ.
早稲田大過去問
この動画を見る
正の整数$m$,定数関数でない整式$P(x)$である.
$\displaystyle\int_{0}^{x} {P(t)}^m dt=P(x^3)-P(0)$
$P(x)$を求めよ.
早稲田大過去問
早稲田の整数問題!標準的なレベルなのでいい練習になります【早稲田大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の条件を満たす正の整数の組(a,b,n)は?である。
n≧2,bは素数,$a^{2}$=$b^{n}$+225
早稲田大過去問
この動画を見る
次の条件を満たす正の整数の組(a,b,n)は?である。
n≧2,bは素数,$a^{2}$=$b^{n}$+225
早稲田大過去問
福田の数学〜早稲田大学2023年理工学部第5問〜回転体の体積
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間において、3点A(2,1,2), B(0,3,0), C(0,-3,0)を頂点とする三角形ABCを考える。以下の問いに答えよ。
(1)$\angle$BACを求めよ。
(2)0≦h≦2に対し、線分AB,ACと平面x=hとの交点をそれぞれP,Qとする。
点P,Qの座標を求めよ。
(3)0≦h≦2に対し、点(h,0,0)と線分PQの距離をhで表せ。ただし、点と線分の距離とは、点と線分上の点の距離の最小値である。
(4)三角形ABCをx軸の周りに1回転させ、そのときに三角形が通過する点全体からなる立体の体積を求めよ。
2023早稲田大学理工学部過去問
この動画を見る
$\Large\boxed{5}$ xyz空間において、3点A(2,1,2), B(0,3,0), C(0,-3,0)を頂点とする三角形ABCを考える。以下の問いに答えよ。
(1)$\angle$BACを求めよ。
(2)0≦h≦2に対し、線分AB,ACと平面x=hとの交点をそれぞれP,Qとする。
点P,Qの座標を求めよ。
(3)0≦h≦2に対し、点(h,0,0)と線分PQの距離をhで表せ。ただし、点と線分の距離とは、点と線分上の点の距離の最小値である。
(4)三角形ABCをx軸の周りに1回転させ、そのときに三角形が通過する点全体からなる立体の体積を求めよ。
2023早稲田大学理工学部過去問
福田の数学〜早稲田大学2023年理工学部第4問〜複素数平面上の点の軌跡
単元:
#大学入試過去問(数学)#複素数平面#微分とその応用#複素数平面#図形への応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 複素数平面上に2点A(1), B($\sqrt 3 i$)がある。ただし、$i$は虚数単位である。
複素数zに対し$w$=$\frac{3}{z}$で表される点$w$を考える。以下の問いに答えよ。
(1)z=1, $\frac{1+\sqrt 3i}{2}$, $\sqrt 3 i$のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t$\sqrt 3 i$とする。$\alpha$=$\frac{3-\sqrt 3 i}{2}$について、$\alpha z$の実部を求め、さらに($w-\alpha$)($\bar{w-\alpha}$)を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
この動画を見る
$\Large\boxed{4}$ 複素数平面上に2点A(1), B($\sqrt 3 i$)がある。ただし、$i$は虚数単位である。
複素数zに対し$w$=$\frac{3}{z}$で表される点$w$を考える。以下の問いに答えよ。
(1)z=1, $\frac{1+\sqrt 3i}{2}$, $\sqrt 3 i$のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t$\sqrt 3 i$とする。$\alpha$=$\frac{3-\sqrt 3 i}{2}$について、$\alpha z$の実部を求め、さらに($w-\alpha$)($\bar{w-\alpha}$)を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。
2023早稲田大学理工学部過去問
この動画を見る
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。
2023早稲田大学理工学部過去問
福田の数学〜早稲田大学2023年理工学部第2問〜玉を取り出す確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 赤玉と黒玉が入っている袋の中から無作為に玉を1つ取り出し、取り出した玉を袋に戻した上で、取り出した玉と同じ色の玉をもう1つ袋に入れる操作を繰り返す。以下の問いに答えよ。
(1)初めに袋の中に赤玉が1個、黒玉が1個入っているとする。n回の操作を行ったとき、赤玉をちょうどk回取り出す確率を$P_n(k)$(k=0,1,...,n)とする。
$P_1(k)$と$P_2(k)$を求め、さらに$P_n(k)$を求めよ。
(2)初めに袋の中に赤玉がr個、黒玉がb個(r≧1, b≧1)入っているとする。n回の操作を行ったとき、k回目に赤玉が、それ以外ではすべて黒玉が取り出される確率$Q_n(k)$(k=1,2,..., n)とする。$Q_n(k)$はkによらないことを示せ。
2023早稲田大学理工学部過去問
この動画を見る
$\Large\boxed{2}$ 赤玉と黒玉が入っている袋の中から無作為に玉を1つ取り出し、取り出した玉を袋に戻した上で、取り出した玉と同じ色の玉をもう1つ袋に入れる操作を繰り返す。以下の問いに答えよ。
(1)初めに袋の中に赤玉が1個、黒玉が1個入っているとする。n回の操作を行ったとき、赤玉をちょうどk回取り出す確率を$P_n(k)$(k=0,1,...,n)とする。
$P_1(k)$と$P_2(k)$を求め、さらに$P_n(k)$を求めよ。
(2)初めに袋の中に赤玉がr個、黒玉がb個(r≧1, b≧1)入っているとする。n回の操作を行ったとき、k回目に赤玉が、それ以外ではすべて黒玉が取り出される確率$Q_n(k)$(k=1,2,..., n)とする。$Q_n(k)$はkによらないことを示せ。
2023早稲田大学理工学部過去問
福田の数学〜早稲田大学2023年理工学部第1問〜整式の割り算の商に関する論証
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。
2023早稲田大学理工学部過去問
この動画を見る
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。
2023早稲田大学理工学部過去問
大学入試問題#475「エフ(f)3つ!」 早稲田大学(2004) #逆関数
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
実数$a$に対して
$f(x)=ax+2$とする
$f(f(f(x)))$が$f(x)$の逆関数になるような$a$の値を求めよ。
出典:2004年早稲田大学理工 入試問題
この動画を見る
実数$a$に対して
$f(x)=ax+2$とする
$f(f(f(x)))$が$f(x)$の逆関数になるような$a$の値を求めよ。
出典:2004年早稲田大学理工 入試問題
2023早稲田(社)三乗根の計算
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とする.
(1)$a^3$をaの一次式で表せ.
(2)aは整数であることを示せ.
(3)$b=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とするとき,bを越えない最大の整数を求めよ.
2023早稲田大(社)過去問
この動画を見る
$a=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とする.
(1)$a^3$をaの一次式で表せ.
(2)aは整数であることを示せ.
(3)$b=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とするとき,bを越えない最大の整数を求めよ.
2023早稲田大(社)過去問
大学入試問題#459「構想力が問われる問題」 早稲田大学(2017) #連続関数
単元:
#大学入試過去問(数学)#関数と極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$C$:定数 $-1 \lt C \lt 1$
すべての実数$x$に対して
$f(x)+f(cx)=x^2$を満たす連続関数$f(x)$を求めよ
出典:2017年早稲田大学 入試問題
この動画を見る
$C$:定数 $-1 \lt C \lt 1$
すべての実数$x$に対して
$f(x)+f(cx)=x^2$を満たす連続関数$f(x)$を求めよ
出典:2017年早稲田大学 入試問題
福田の1.5倍速演習〜合格する重要問題099〜早稲田大学2020年度社会科学部第3問〜複数の円の位置関係
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の5つの点$P_1$($-\sqrt 5$, 0), $P_2$($-\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_3$(0, 0), $P_4$($\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_5$($\sqrt 5$, 0)をそれぞれ中心とする半径1の円を$C_1$, $C_2$, $C_3$, $C_4$, $C_5$とする。次の問に答えよ。
(1)1つ以上の円に囲まれる領域の面積を求めよ。
(2)2つ以上の円と接する直線の本数を求めよ。
(3)3つ以上の円と外接する円の半径をすべて求めよ。
2020早稲田大学社会科学部過去問
この動画を見る
$\Large\boxed{3}$ 座標平面上の5つの点$P_1$($-\sqrt 5$, 0), $P_2$($-\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_3$(0, 0), $P_4$($\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_5$($\sqrt 5$, 0)をそれぞれ中心とする半径1の円を$C_1$, $C_2$, $C_3$, $C_4$, $C_5$とする。次の問に答えよ。
(1)1つ以上の円に囲まれる領域の面積を求めよ。
(2)2つ以上の円と接する直線の本数を求めよ。
(3)3つ以上の円と外接する円の半径をすべて求めよ。
2020早稲田大学社会科学部過去問
福田の1.5倍速演習〜合格する重要問題098〜早稲田大学2020年度商学部第1問(1)〜積分方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)m, nを正の整数とする。n次関数f(x)が、次の等式を満たしているとき、f(x)=$\boxed{\ \ ア\ \ }$である。
$\displaystyle\int_0^x(x-t)^{m-1}f(t)dt$=$\left\{f(x)\right\}^m$
2020早稲田大学商学部過去問
この動画を見る
$\Large\boxed{1}$ (1)m, nを正の整数とする。n次関数f(x)が、次の等式を満たしているとき、f(x)=$\boxed{\ \ ア\ \ }$である。
$\displaystyle\int_0^x(x-t)^{m-1}f(t)dt$=$\left\{f(x)\right\}^m$
2020早稲田大学商学部過去問
福田の1.5倍速演習〜合格する重要問題097〜早稲田大学2020年度教育学部第4問〜曲線の通過範囲の面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。
2020早稲田大学教育学部過去問
この動画を見る
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。
2020早稲田大学教育学部過去問
福田の1.5倍速演習〜合格する重要問題096〜早稲田大学2020年度理工学部第3問〜水の問題
単元:
#大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 曲線 x=g(y)のy≧0の部分とx軸上の線分0≦x≦g(0)のなす曲線をCとし、Cをy軸のまわりに1回転してできる容器をVとする。ただし、g(y)はy≧0で定義された正の関数とする。Vに毎秒一定量vの水を注ぐとする。t秒後のV内の水位をy=h(t)とするとき、以下の問に答えよ。
(1)水位が一定の速さで上昇するとき、g(y)は定数関数であることを示せ。
(2)g(y)=$e^y$のとき、h(t)を求めよ。
2020早稲田大学理工学部過去問
この動画を見る
$\Large\boxed{3}$ 曲線 x=g(y)のy≧0の部分とx軸上の線分0≦x≦g(0)のなす曲線をCとし、Cをy軸のまわりに1回転してできる容器をVとする。ただし、g(y)はy≧0で定義された正の関数とする。Vに毎秒一定量vの水を注ぐとする。t秒後のV内の水位をy=h(t)とするとき、以下の問に答えよ。
(1)水位が一定の速さで上昇するとき、g(y)は定数関数であることを示せ。
(2)g(y)=$e^y$のとき、h(t)を求めよ。
2020早稲田大学理工学部過去問
中学生でも解ける大学入試問題!【早稲田大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の二次関数$y=ax^2+bx+c$のグラフが相違なる3点$(a,b),(b,c),(c,a)$を通るものとする。
ただし,$abc≠0$とする。このとき,次の問いに答えよ。
(1)$a$の値を求めよ。
(2)$b,c$の値を求めよ。
早稲田大過去問
この動画を見る
$x$の二次関数$y=ax^2+bx+c$のグラフが相違なる3点$(a,b),(b,c),(c,a)$を通るものとする。
ただし,$abc≠0$とする。このとき,次の問いに答えよ。
(1)$a$の値を求めよ。
(2)$b,c$の値を求めよ。
早稲田大過去問
4次方程式が2つの実数解しか持たないということは・・・【早稲田大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$は整数とする。四次方程式$x^4+ax^3+bx^2+cx+3=0$の実数解が1と3となるような$a$の最大値?で最小値は?である。
早稲田大過去問
この動画を見る
$a,b,c$は整数とする。四次方程式$x^4+ax^3+bx^2+cx+3=0$の実数解が1と3となるような$a$の最大値?で最小値は?である。
早稲田大過去問
福田の1.5倍速演習〜合格する重要問題063〜早稲田大学2019年度理工学部第3問〜ガウス記号と極限
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$ 実数xに対し、[x]をx-1<[x]≦xを満たす整数とする。次の極限を求めよ。
(1)$\displaystyle\lim_{n \to \infty}\frac{1}{n}\left[\frac{1}{\sin\frac{1}{n}}\right]$
(2)$\displaystyle\lim_{n \to \infty}\frac{1}{n\sqrt n}(1+[\sqrt 2]+[\sqrt 3]+\cdots+[\sqrt n])$
2019早稲田大学理工学部過去問
この動画を見る
$\boxed{3}$ 実数xに対し、[x]をx-1<[x]≦xを満たす整数とする。次の極限を求めよ。
(1)$\displaystyle\lim_{n \to \infty}\frac{1}{n}\left[\frac{1}{\sin\frac{1}{n}}\right]$
(2)$\displaystyle\lim_{n \to \infty}\frac{1}{n\sqrt n}(1+[\sqrt 2]+[\sqrt 3]+\cdots+[\sqrt n])$
2019早稲田大学理工学部過去問