実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
【数検準2級】高校数学:数学検定準2級2次:問2
単元:
#数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学検定#数学検定準2級#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問2.次の問いに答えなさい。
(3) 正の数xに対して、xを超えない最大の整数をxの整数部分、xからxの整数部分を引いた値をxの小数部分といいます。
たとえば$\sqrt2(=1.414…)$については、$1\lt\sqrt2\lt2$より、$\sqrt2$の整数部分は1、$\sqrt2$の小数部分は$\sqrt2-1$となります。
$\sqrt5$の小数部分をaとするとき、$a^2+4a$の値を求めなさい。
この動画を見る
問2.次の問いに答えなさい。
(3) 正の数xに対して、xを超えない最大の整数をxの整数部分、xからxの整数部分を引いた値をxの小数部分といいます。
たとえば$\sqrt2(=1.414…)$については、$1\lt\sqrt2\lt2$より、$\sqrt2$の整数部分は1、$\sqrt2$の小数部分は$\sqrt2-1$となります。
$\sqrt5$の小数部分をaとするとき、$a^2+4a$の値を求めなさい。
投稿日は4月1日。2重根号を外せ!!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{ \sqrt {49} - \sqrt {48}} = 1$
この動画を見る
$\sqrt{ \sqrt {49} - \sqrt {48}} = 1$
生徒にめちゃくちゃ質問されるやつ 絶対値を外せ!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
場合分けして絶対値を外せ
$|x| ={$
この動画を見る
場合分けして絶対値を外せ
$|x| ={$
福田の数学〜東京慈恵会医科大学2023年医学部第3問〜無理数である証明
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Oを原点とする座標平面において、第1象限に属する点P($\sqrt 2r$, $\sqrt 3s$)(r,sは有理数)をとるとき、線分OPの長さは無理数となることを示せ。
2023東京慈恵会医科大学医学部過去問
この動画を見る
$\Large\boxed{3}$ Oを原点とする座標平面において、第1象限に属する点P($\sqrt 2r$, $\sqrt 3s$)(r,sは有理数)をとるとき、線分OPの長さは無理数となることを示せ。
2023東京慈恵会医科大学医学部過去問
場合分けは何パターン?多くの絶対値を含んだ問題【京都大学】【数学 入試問題】
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$が整数であるとき$S=\vert n-1 \vert+\vert n-2 \vert+……+\vert n-100 \vert$の最小値を求めよ。
また、そのときの$n$の値を求めよ。
京都大学1961年過去問
この動画を見る
$n$が整数であるとき$S=\vert n-1 \vert+\vert n-2 \vert+……+\vert n-100 \vert$の最小値を求めよ。
また、そのときの$n$の値を求めよ。
京都大学1961年過去問
高校数学 ルートを外せ!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt {a^6b^2} = ?$
($a<0 , b>0$)
この動画を見る
$\sqrt {a^6b^2} = ?$
($a<0 , b>0$)
福田の数学〜京都大学2023年文系第1問〜3乗根の有理化
単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 問1 nを自然数とする。1個のさいころをn回投げるとき、出た目の積が5で割り切れる確率を求めよ。
問2 次の式の分母を有理化し、分母に3乗根の記号が含まれない式として表せ。
$\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$
2023京都大学文系過去問
この動画を見る
$\Large\boxed{1}$ 問1 nを自然数とする。1個のさいころをn回投げるとき、出た目の積が5で割り切れる確率を求めよ。
問2 次の式の分母を有理化し、分母に3乗根の記号が含まれない式として表せ。
$\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$
2023京都大学文系過去問
東京医科大
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{30\sqrt{a}-319\sqrt{b}}=\sqrt a-\sqrt b$であるとき、$a,b$の値を求めよ。
東京医科大学過去問
この動画を見る
$\sqrt[3]{30\sqrt{a}-319\sqrt{b}}=\sqrt a-\sqrt b$であるとき、$a,b$の値を求めよ。
東京医科大学過去問
ルートの入っている二次方程式を解け。2023東海
単元:
#数Ⅰ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式を解け
$2\sqrt 2 x^2 - \sqrt{14}x - \sqrt 2 = 0$
2023東海高等学校
この動画を見る
2次方程式を解け
$2\sqrt 2 x^2 - \sqrt{14}x - \sqrt 2 = 0$
2023東海高等学校
ルートの中にマイナス
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt {-2} \times \sqrt {-3} = $
この動画を見る
$\sqrt {-2} \times \sqrt {-3} = $
2023早稲田(社)三乗根の計算
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とする.
(1)$a^3$をaの一次式で表せ.
(2)aは整数であることを示せ.
(3)$b=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とするとき,bを越えない最大の整数を求めよ.
2023早稲田大(社)過去問
この動画を見る
$a=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とする.
(1)$a^3$をaの一次式で表せ.
(2)aは整数であることを示せ.
(3)$b=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とするとき,bを越えない最大の整数を求めよ.
2023早稲田大(社)過去問
【短時間でマスター!!】整数(平方根が自然数になる問題)を解説!〔現役塾講師解説、数学〕
単元:
#数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
数学1A
整数
$\sqrt{600n}$が自然数となるような最小の自然数$n$は?
$\sqrt{\frac{72}{n}}$が自然数となるような最小の自然数$n$は?
この動画を見る
数学1A
整数
$\sqrt{600n}$が自然数となるような最小の自然数$n$は?
$\sqrt{\frac{72}{n}}$が自然数となるような最小の自然数$n$は?
2023京都大学 3乗根の分母の有理化
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
分母を有利化せよ.
$\dfrac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$
2023京都大過去問
この動画を見る
分母を有利化せよ.
$\dfrac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$
2023京都大過去問
2023高校入試数学解説45問目 二重根号 灘高校
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\sqrt{100+\sqrt{9991}} + \sqrt{100-\sqrt{9991}})^2 =?$
$2\sqrt{100 + \sqrt {9991}} - \sqrt{206}=?$
2023灘高等学校 最初の1問
この動画を見る
$(\sqrt{100+\sqrt{9991}} + \sqrt{100-\sqrt{9991}})^2 =?$
$2\sqrt{100 + \sqrt {9991}} - \sqrt{206}=?$
2023灘高等学校 最初の1問
2023高校入試解説31問目 ルートが外れる問題 桃山学院
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{2023}{n}}$が自然数となるような自然数nをすべて求めよ。
2023桃山学院高等学校
この動画を見る
$\sqrt{\frac{2023}{n}}$が自然数となるような自然数nをすべて求めよ。
2023桃山学院高等学校
2023高校入試解説27問目 √が入っている因数分解 早稲田本庄
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$3x^2+y^2+2 \sqrt{3}xy+7 \sqrt3x+7y -18$
2023早稲田大学 本庄高等学院
この動画を見る
因数分解せよ
$3x^2+y^2+2 \sqrt{3}xy+7 \sqrt3x+7y -18$
2023早稲田大学 本庄高等学院
2023高校入試解説26問目 √の計算 早稲田本庄最初の一問
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\{ \frac{\sqrt2 + \sqrt3 -\sqrt5}{\sqrt{18}(\sqrt2 -1)} \}^2 \div
\{ \frac{\sqrt2(\sqrt8 + 2 )}{\sqrt{2}+ \sqrt3 + \sqrt5)} \}^2$
2023早稲田大学 本庄高等学院
この動画を見る
$\{ \frac{\sqrt2 + \sqrt3 -\sqrt5}{\sqrt{18}(\sqrt2 -1)} \}^2 \div
\{ \frac{\sqrt2(\sqrt8 + 2 )}{\sqrt{2}+ \sqrt3 + \sqrt5)} \}^2$
2023早稲田大学 本庄高等学院
楽しいルートの計算
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{2223^2 - 8888}$
この動画を見る
$\sqrt{2223^2 - 8888}$
ルートと素数 大阪偕星学園
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{p(q+1)}$が1ケタの素数になるようなp,qを求めよ。(p,q:素数)
大阪偕星学園高等学校
この動画を見る
$\sqrt{p(q+1)}$が1ケタの素数になるようなp,qを求めよ。(p,q:素数)
大阪偕星学園高等学校
中学生が解くには難しい 平方根の計算 青山学院
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=\frac{1}{2}(a^2 - \frac{1}{a^2})$
$\sqrt{1+x^2}$をaを用いて表せ。(a>0)
青山学院高等部
この動画を見る
$x=\frac{1}{2}(a^2 - \frac{1}{a^2})$
$\sqrt{1+x^2}$をaを用いて表せ。(a>0)
青山学院高等部
ルートを外せ!!2023 受験生は概要欄を見よ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{2023n}$が整数となる最小の整数n=?
この動画を見る
$\sqrt{2023n}$が整数となる最小の整数n=?
知ってなきゃ解けない? 分母の有理化 開成高校 今年の反省 来年の抱負
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
分母を有理化せよ
$\frac{1}{1+\sqrt 2 + \sqrt 3}$
開成高等学校
この動画を見る
分母を有理化せよ
$\frac{1}{1+\sqrt 2 + \sqrt 3}$
開成高等学校
√の中に√入れたくないよね。式の値 巣鴨高校
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a=\sqrt 6 +\sqrt 2,b=\sqrt 6 - \sqrt 2$
$\frac{\sqrt a +\sqrt b}{\sqrt a - \sqrt b} = ?$
巣鴨高等学校
この動画を見る
$a=\sqrt 6 +\sqrt 2,b=\sqrt 6 - \sqrt 2$
$\frac{\sqrt a +\sqrt b}{\sqrt a - \sqrt b} = ?$
巣鴨高等学校
決め手は、和と差の○
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{\sqrt{11}+1}{\sqrt 3 +1}=a$
$\frac{\sqrt{11}-1}{\sqrt 3 -1}$をaを用いて表せ。
この動画を見る
$\frac{\sqrt{11}+1}{\sqrt 3 +1}=a$
$\frac{\sqrt{11}-1}{\sqrt 3 -1}$をaを用いて表せ。
キレイに解けるよ√の計算
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{9999^2 + 9999+10000} =?$
この動画を見る
$\sqrt{9999^2 + 9999+10000} =?$
数1の基本問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4^x+(2a^2-a+6)・2^x+2a^2+a-6=0$が実数解をもつaの範囲を求めよ.
この動画を見る
$4^x+(2a^2-a+6)・2^x+2a^2+a-6=0$が実数解をもつaの範囲を求めよ.
大学入試じゃね? 灘高校 小数部分
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正の数xの小数部分を
$(x - \langle x \rangle)^2 + (3 \langle x \rangle -1)^2 = 6$のとき
$x - \langle x \rangle = ? ,x=?$
灘高等学校
この動画を見る
正の数xの小数部分を
$(x - \langle x \rangle)^2 + (3 \langle x \rangle -1)^2 = 6$のとき
$x - \langle x \rangle = ? ,x=?$
灘高等学校
根号を外すだけの問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{55×56×57+1}$
根号を外せ.
この動画を見る
$\sqrt{55×56×57+1}$
根号を外せ.
【数学】有理化がなぜ必要なのか?解説してみた!
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
有理化って何のためにしてるか知っていますか??
この動画を見る
有理化って何のためにしてるか知っていますか??
出題者の意図を汲みとるだけの問題。灘高の計算
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2})^2-\sqrt{(7-5\sqrt2})^2}=?$
?を求めよ.
灘高校過去問
この動画を見る
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2})^2-\sqrt{(7-5\sqrt2})^2}=?$
?を求めよ.
灘高校過去問