数と式
ミスリードに気をつけろ!久留米大(医)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$\displaystyle \frac{3}{2\sqrt13-7}$
整数部分と小数部分を求めよ
(2)$\displaystyle \frac{2}{a-\sqrt7}$
整数部分が5である。整数aを求めよ
久留米大(医)過去問
この動画を見る
(1)$\displaystyle \frac{3}{2\sqrt13-7}$
整数部分と小数部分を求めよ
(2)$\displaystyle \frac{2}{a-\sqrt7}$
整数部分が5である。整数aを求めよ
久留米大(医)過去問
式の値 四天王寺
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1010^2+990^2}{111^2-89^2}$
四天王寺高等学校
この動画を見る
$\frac{1010^2+990^2}{111^2-89^2}$
四天王寺高等学校
正か負かゼロか 函館ラ・サール 予告問題、分母足し算でなく、引き算でした🙇
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=\sqrt{2023}$のとき
$x^2-89x+1980$の値について正しいのは?
①符号は正である
②符号は負である
③0である
函館ラ・サール高等学校
この動画を見る
$x=\sqrt{2023}$のとき
$x^2-89x+1980$の値について正しいのは?
①符号は正である
②符号は負である
③0である
函館ラ・サール高等学校
共テ数学90%取る勉強法
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る
共通テスト数学90%取る勉強法説明動画です
777777を素因数分解
鳥取大 ただの因数分解
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2x^3-5x^2-5x+4$を因数分解しなさい
鳥取大過去問
この動画を見る
$2x^3-5x^2-5x+4$を因数分解しなさい
鳥取大過去問
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
式の値 2通りで解説!!
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(60-x)(x-40)=50$
$(60-x)^2+(x-40)^2 =?$
この動画を見る
$(60-x)(x-40)=50$
$(60-x)^2+(x-40)^2 =?$
消えるのが気持ち良い
同じ数を3回足しても3回かけても等しくなる数とは?
福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。
2023早稲田大学社会科学部過去問
この動画を見る
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。
2023早稲田大学社会科学部過去問
因数分解
素因数分解せよ
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
12317
素因数分解せよ
この動画を見る
12317
素因数分解せよ
答えが変わる!! 慶應湘南藤沢中
秋だけど因数分解
因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
因数分解(整数係数)\\
x^4-2x^2-20x-24
\end{eqnarray}
$
この動画を見る
$
\begin{eqnarray}
因数分解(整数係数)\\
x^4-2x^2-20x-24
\end{eqnarray}
$
約数の和に関する問題だ 専修大松戸
単元:
#数Ⅰ#数と式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正の整数nのすべての正の約数の和を$\langle \langle n \rangle \rangle$で表すことにする。
$\langle \langle n \rangle \rangle =n+8$をみたすnの値をすべて求めよ。
専修大学松戸高等学校
この動画を見る
正の整数nのすべての正の約数の和を$\langle \langle n \rangle \rangle$で表すことにする。
$\langle \langle n \rangle \rangle =n+8$をみたすnの値をすべて求めよ。
専修大学松戸高等学校
数学なぞなぞ
=入れる入れない問題。不等式。初見でよく間違えます。高知学芸
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
不等式1< x < k+2を満たす整数xが2と3だけであるときkの範囲を求めよ。
高知学芸高等学校
この動画を見る
不等式1< x < k+2を満たす整数xが2と3だけであるときkの範囲を求めよ。
高知学芸高等学校
福田の数学〜中央大学2023年経済学部第1問(5)〜平面ベクトルの成分と絶対値
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\vec{a}+\vec{b}=(3,4),\vec{a}-\vec{b}=(1,2)$
のとき
$|2\vec{a}-3\vec{b}|$
の値を求めよ。
2023中央大学経済学部過去問
この動画を見る
$\vec{a}+\vec{b}=(3,4),\vec{a}-\vec{b}=(1,2)$
のとき
$|2\vec{a}-3\vec{b}|$
の値を求めよ。
2023中央大学経済学部過去問
因数分解できない因数分解
福田の数学〜中央大学2023年経済学部第1問(1)〜整式の割り算
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式$x^3$+$ax^2$+$bx$-3 が$x^2$+$x$-6 で割り切れるとき、定数$a$, $b$の値を求めよ。
この動画を見る
$\Large\boxed{1}$ (1)整式$x^3$+$ax^2$+$bx$-3 が$x^2$+$x$-6 で割り切れるとき、定数$a$, $b$の値を求めよ。
2通りで解説!!因数分解 朋優学院
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$(a+1)^2+a-b-(b+1)^2$
朋優学院高等学校
この動画を見る
因数分解せよ
$(a+1)^2+a-b-(b+1)^2$
朋優学院高等学校
連立三元二次方程式 要ちょい工夫
単元:
#数と式
指導講師:
鈴木貫太郎
問題文全文(内容文):
解け
$
\begin{eqnarray}
\left\{
\begin{array}{l}
xy +x+ y = 49 \\
yz + y + z = 47\\
zx + z+x = 53
\end{array}
\right.
\end{eqnarray}
$
この動画を見る
解け
$
\begin{eqnarray}
\left\{
\begin{array}{l}
xy +x+ y = 49 \\
yz + y + z = 47\\
zx + z+x = 53
\end{array}
\right.
\end{eqnarray}
$
福田の数学〜上智大学2023年理工学部第1問(2)〜関数の集合と条件
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\left\{x|x>0\right\}$を定義域とする関数$f(x)$の集合Aに対する以下の3つの条件を考える。
(P)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)+g(x)$もAの要素である。
(Q)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)g(x)$もAの要素である。
(R)$\alpha$が0でない定数で関数$f(x)$がAの要素ならば、関数$\alpha f(x)$もAの要素である。
Aを以下の(i)~(iv)の集合とするとき、条件(P),(Q),(R)のうち成り立つものをすべて解答欄にマークせよ。
(i)$f(1)$=0 を満たす関数$f(x)$全体の集合
(ii)$f(\alpha)$=0 となる正の実数$\alpha$が存在する関数$f(x)$全体の集合
(iii)全ての正の実数$x$に対して$f(x)$>0 が成り立つ関数$f(x)$全体の集合
(iv)定義域$\left\{x|x>0\right\}$のどこかで連続でない関数$f(x)$全体の集合
この動画を見る
$\Large{\boxed{1}}$ (2)$\left\{x|x>0\right\}$を定義域とする関数$f(x)$の集合Aに対する以下の3つの条件を考える。
(P)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)+g(x)$もAの要素である。
(Q)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)g(x)$もAの要素である。
(R)$\alpha$が0でない定数で関数$f(x)$がAの要素ならば、関数$\alpha f(x)$もAの要素である。
Aを以下の(i)~(iv)の集合とするとき、条件(P),(Q),(R)のうち成り立つものをすべて解答欄にマークせよ。
(i)$f(1)$=0 を満たす関数$f(x)$全体の集合
(ii)$f(\alpha)$=0 となる正の実数$\alpha$が存在する関数$f(x)$全体の集合
(iii)全ての正の実数$x$に対して$f(x)$>0 が成り立つ関数$f(x)$全体の集合
(iv)定義域$\left\{x|x>0\right\}$のどこかで連続でない関数$f(x)$全体の集合
因数分解せよ 昭和学院秀英
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^3y^3+18-9xy-2x^2y^2$
昭和学院秀英高等学校
この動画を見る
因数分解せよ
$x^3y^3+18-9xy-2x^2y^2$
昭和学院秀英高等学校
まさかそのまま代入しないよね?因数分解はできないよ。式の値 早稲田実業
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=1+\sqrt 2 + \sqrt 3$のとき
$x^2-2x-4=?$
早稲田実業学校
この動画を見る
$x=1+\sqrt 2 + \sqrt 3$のとき
$x^2-2x-4=?$
早稲田実業学校
佐賀大(医)無理数の証明
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2018年 佐賀大学医学部 過去問
①nが平方数でない自然数のとき、
$\sqrt{n}$は無理数であることを示せ。
②$a,b$は正の有理数、$m$は自然数のとき、
$a\sqrt{m}+b\sqrt{m + 1}$
は無理数であることを示せ。
この動画を見る
2018年 佐賀大学医学部 過去問
①nが平方数でない自然数のとき、
$\sqrt{n}$は無理数であることを示せ。
②$a,b$は正の有理数、$m$は自然数のとき、
$a\sqrt{m}+b\sqrt{m + 1}$
は無理数であることを示せ。
ほぼ自明な証明ほど難しい?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{2}+\sqrt{3}$
が無理数であることを証明せよ。
この動画を見る
$\sqrt{2}+\sqrt{3}$
が無理数であることを証明せよ。
かかってしまいました。因数分解せよ。履正社(大阪府)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
2x(4x-1)-y(2y+1)
履正社高等学校
この動画を見る
因数分解せよ
2x(4x-1)-y(2y+1)
履正社高等学校