2次方程式と2次不等式

「二次不等式の解の条件①」【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。
(2)すべての実数$x$について、不等式$(k-2)x^2-2(k-I)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。
この動画を見る
次の問いに答えよ。
(1)すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。
(2)すべての実数$x$について、不等式$(k-2)x^2-2(k-I)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。
「二次方程式の解と共通解」【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x$についての方程式$(k-1)x^2+2(k+3)x+k+6=0$の実数解がただ1つであるような定数$k$の値と、その時の実数解を求めよ。
この動画を見る
$x$についての方程式$(k-1)x^2+2(k+3)x+k+6=0$の実数解がただ1つであるような定数$k$の値と、その時の実数解を求めよ。
「二次方程式の判別式(解の個数)」【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2+(2k-1)x+k^2+1=0$について以下の問いに答えよ。
(1)実数解をもつような$k$の値の範囲を求めよ。
(2)重解をもつような$k$の値と、重解を求めよ。
2次方程式$x^2+(2k-1)x+k^2+1=0$について以下の問いに答えよ。
(1)実数解をもつような$k$の値の範囲を求めよ。
(2)重解をもつような$k$の値と、重解を求めよ。
以下の問いに答えよ。
(1)2次方程式$y=2kx-k+2$が$x$軸と接するような定数$k$の値と接点を求めよ。
(2)2次方程式$y=x^2+kx-2k+3$が$x$軸と異なる2つの共有点をもつような定数$k$の値の範囲を求めよ。
(3)2次関数$y=2x^2+1$と直線$y=-2x+3k$が共有点をもつような定数$k$の値の範囲を求めよ。
(4)2次関数$y=x^2+4x+2k$のグラフが$x$軸から切り取る線分の長さが$3\sqrt{ 2 }$であるとき、定数$k$の値を求めよ。
この動画を見る
2次方程式$x^2+(2k-1)x+k^2+1=0$について以下の問いに答えよ。
(1)実数解をもつような$k$の値の範囲を求めよ。
(2)重解をもつような$k$の値と、重解を求めよ。
2次方程式$x^2+(2k-1)x+k^2+1=0$について以下の問いに答えよ。
(1)実数解をもつような$k$の値の範囲を求めよ。
(2)重解をもつような$k$の値と、重解を求めよ。
以下の問いに答えよ。
(1)2次方程式$y=2kx-k+2$が$x$軸と接するような定数$k$の値と接点を求めよ。
(2)2次方程式$y=x^2+kx-2k+3$が$x$軸と異なる2つの共有点をもつような定数$k$の値の範囲を求めよ。
(3)2次関数$y=2x^2+1$と直線$y=-2x+3k$が共有点をもつような定数$k$の値の範囲を求めよ。
(4)2次関数$y=x^2+4x+2k$のグラフが$x$軸から切り取る線分の長さが$3\sqrt{ 2 }$であるとき、定数$k$の値を求めよ。
「二次不等式の計算】【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の2次方程式を解け。
(1)$x^2-6x-72 \gt 0$
(2)$x^2-3x+1 \leqq 0$
(3)$-x^2+2x+1 \lt 0$
(4)$x^2+2x+5 \gt 0$
(5)$x^2+2x+5 \lt 0$
(6)$x^2+2x+5 \geqq 0$
(7)$x^2+2x+5 \leqq 0$
(8)$x^2-6x+9 \gt 0$
(9)$x^2-6x+9 \lt 0$
(10)$x^2-6x+9 \geqq 0$
(11)$x^2-6x+9 \leqq 0$
2次不等式$ax^2+bx+6 \lt 0$の解が次のようになるときの定数$a,b$の値を求めよ。
(1)$2 \lt x \lt 3$
(2)$x \lt -3,4 \lt x$
この動画を見る
次の2次方程式を解け。
(1)$x^2-6x-72 \gt 0$
(2)$x^2-3x+1 \leqq 0$
(3)$-x^2+2x+1 \lt 0$
(4)$x^2+2x+5 \gt 0$
(5)$x^2+2x+5 \lt 0$
(6)$x^2+2x+5 \geqq 0$
(7)$x^2+2x+5 \leqq 0$
(8)$x^2-6x+9 \gt 0$
(9)$x^2-6x+9 \lt 0$
(10)$x^2-6x+9 \geqq 0$
(11)$x^2-6x+9 \leqq 0$
2次不等式$ax^2+bx+6 \lt 0$の解が次のようになるときの定数$a,b$の値を求めよ。
(1)$2 \lt x \lt 3$
(2)$x \lt -3,4 \lt x$
県立広島大 ガウス記号を含む二次方程式

産業医大 2次方程式と3次方程式の共通解

単元:
#数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.
1996産業医大過去問
この動画を見る
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.
1996産業医大過去問
単なる二次方程式

18神奈川県教員採用試験(数学:2番 不等式)

単元:
#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
2⃣$(x^2-6x+2)^2-4(x^2-6x+2)-45 \leqq 0$をみたす整数xの個数を求めよ。
この動画を見る
2⃣$(x^2-6x+2)^2-4(x^2-6x+2)-45 \leqq 0$をみたす整数xの個数を求めよ。
11東京都教員採用試験(数学:1番 整数問題)

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣ $2x^2-2xy+y^2 = 10$をみたす自然数の組(x,y)を求めよ。
この動画を見る
1⃣ $2x^2-2xy+y^2 = 10$をみたす自然数の組(x,y)を求めよ。
14奈良県教員採用試験(数学:2番 式変形)

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
2⃣x=1-y-z
$x^2=1+yz$
(1)$x^3+y^3+z^3$をxで表せ
(2)xの範囲を求めよ。
(3)$x^3+y^3+z^3$の最大値を求めよ。
この動画を見る
2⃣x=1-y-z
$x^2=1+yz$
(1)$x^3+y^3+z^3$をxで表せ
(2)xの範囲を求めよ。
(3)$x^3+y^3+z^3$の最大値を求めよ。
上智大2020整数解をもつ二次方程式の条件 2つの解法

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-mx+3m+1=0$が整数解をもつ整数$m$を求めよ.
2020上智大過去問
この動画を見る
$x^2-mx+3m+1=0$が整数解をもつ整数$m$を求めよ.
2020上智大過去問
17兵庫県教員採用試験(数学:1-2番 不等式)

単元:
#2次関数#2次方程式と2次不等式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(2)
$x^2-(2a+3)x+6a<0$を満たす整数解が3つとなるaの範囲
この動画を見る
1⃣-(2)
$x^2-(2a+3)x+6a<0$を満たす整数解が3つとなるaの範囲
17東京都教員採用試験(数学1-1番 整数問題)

単元:
#数Ⅰ#数A#数Ⅱ#2次関数#式と証明#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣$m^2-mn+2n^2=28$
$m,n \in \mathbb{ N } (m>n)$を求めよ。
この動画を見る
1⃣$m^2-mn+2n^2=28$
$m,n \in \mathbb{ N } (m>n)$を求めよ。
産業医大 3次方程式と2次方程式の共通解

単元:
#数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.
1996産業医大過去問
この動画を見る
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.
1996産業医大過去問
16大阪府教員採用試験(数学:連立不等式)

単元:
#2次関数#2次方程式と2次不等式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$a \in \mathbb{ R }$,
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - (a+2)x+2a 0
\end{array}
\right.
\end{eqnarray}
$
を同時に満たす整数がただ1つ存在するようにaの値の範囲を求めよ。
この動画を見る
$a \in \mathbb{ R }$,
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - (a+2)x+2a 0
\end{array}
\right.
\end{eqnarray}
$
を同時に満たす整数がただ1つ存在するようにaの値の範囲を求めよ。
【数Ⅰ】2次関数:2次方程式が重解を持つ条件をわかりやすく解説!

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$4x²+(m-1)x+1=0$が重解を持つように、定数mの値を定めよ。
この動画を見る
$4x²+(m-1)x+1=0$が重解を持つように、定数mの値を定めよ。
19神奈川県教員採用試験(数学:関数の最大値)

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
この動画を見る
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
福井大 2次方程式と複素平面

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
この動画を見る
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
山梨大 2次方程式と複素数平面

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
この動画を見る
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
「定数a入りの二次不等式」【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式や不等式を解け。
(1)$x^2-(a+1)x+a=0$
(2)$x^2-(a+1)x+a \lt 0$
(3)$ax^2-4ax-5a \lt 0$
(4)$x^2-3ax+2a^2+a-1 \gt 0$
この動画を見る
次の方程式や不等式を解け。
(1)$x^2-(a+1)x+a=0$
(2)$x^2-(a+1)x+a \lt 0$
(3)$ax^2-4ax-5a \lt 0$
(4)$x^2-3ax+2a^2+a-1 \gt 0$
【高校数学】二次関数を36分でまとめてみた【解説・授業】

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】二次関数まとめ・解説動画です
-----------------
$y=2x^2-7x+3$を$x$軸方向に-3、$y$軸方向に1、平行移動したときの放物線の方程式を求めよ
この動画を見る
【高校数学】二次関数まとめ・解説動画です
-----------------
$y=2x^2-7x+3$を$x$軸方向に-3、$y$軸方向に1、平行移動したときの放物線の方程式を求めよ
早稲田大 対数 2次方程式 負の実数解

単元:
#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$
出典:1981年早稲田大学 過去問
この動画を見る
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$
出典:1981年早稲田大学 過去問
お茶の水女子大 2次方程式 訂正版

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:1988年お茶の水女子大学 過去問訂正版
この動画を見る
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ
出典:1988年お茶の水女子大学 過去問訂正版
愛知教育大 二次不等式

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
不等式を解け
$a \neq 0,1$
$a(a-1)x^2+(2-3a)x+2 \lt 0$
出典:2018年愛知教育大学 過去問
この動画を見る
不等式を解け
$a \neq 0,1$
$a(a-1)x^2+(2-3a)x+2 \lt 0$
出典:2018年愛知教育大学 過去問
立教大 2次方程式の解 Mathematics Japanese university entrance exam

単元:
#2次方程式#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
この動画を見る
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
信州大 二次方程式・二次関数 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+ax+a=0$
2つの実数解をもち、その絶対値は1より小さい$a$の範囲
出典:2002年信州大学 過去問
この動画を見る
$x^2+ax+a=0$
2つの実数解をもち、その絶対値は1より小さい$a$の範囲
出典:2002年信州大学 過去問
二次方程式の解の公式 東大「卒」のもっちゃんなら導けるよね!

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x=\displaystyle \frac{-b \pm \sqrt{ b^2-4ac }}{2a}$
この動画を見る
$x=\displaystyle \frac{-b \pm \sqrt{ b^2-4ac }}{2a}$
東大 ヨビノリのタクミ先生 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ
出典:1997年東京大学 過去問
この動画を見る
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ
出典:1997年東京大学 過去問
一橋大 3次方程式 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$整数
$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。
出典:一橋大学 過去問
この動画を見る
$a,b$整数
$x^3+ax^2+bx-1=0$は3つの実数解$\alpha, \beta, \gamma$をもち、$0 \lt \alpha \lt \beta \lt \gamma \lt 3$で、$\alpha, \beta, \gamma$のうちどれかは整数である。
$a,b$を求めよ。
出典:一橋大学 過去問
二次方程式が整数解を持つ条件 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m$自然数
$mx^2-2mx-8m+5=0$が整数解をもつような$m$の値
この動画を見る
$m$自然数
$mx^2-2mx-8m+5=0$が整数解をもつような$m$の値