数Ⅰ
数Ⅰ
福田のわかった数学〜高校2年生059〜対称式と領域(1)

単元:
#数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$対称式と領域(1)
実数$x,\ yがx^2+y^2 \leqq 1$を
満たしながら動くとき、
次の点の存在範囲を図示せよ。
(1)$P(x+y,\ x-y) (2)Q(x+y,\ xy)$
この動画を見る
数学$\textrm{II}$対称式と領域(1)
実数$x,\ yがx^2+y^2 \leqq 1$を
満たしながら動くとき、
次の点の存在範囲を図示せよ。
(1)$P(x+y,\ x-y) (2)Q(x+y,\ xy)$
福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

単元:
#平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。
2021明治大学全統過去問
この動画を見る
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。
2021明治大学全統過去問
福田のわかった数学〜高校1年生059〜図形の計量(10)正四面体の各辺に接する球の半径

単元:
#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(10)
1辺の長さがaの正四面体の全ての辺に接する球の半径を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(10)
1辺の長さがaの正四面体の全ての辺に接する球の半径を求めよ。
【数Ⅰ】区間が動く2次関数の最大最小【丁寧に場合分け】

単元:
#数Ⅰ#2次関数#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ aを定数とする.a \leqq x \leqq a+2における関数f(x)=x^2-2x+4の最大値および最小値を求めよ.$
この動画を見る
$ aを定数とする.a \leqq x \leqq a+2における関数f(x)=x^2-2x+4の最大値および最小値を求めよ.$
高校範囲?と思わせる慶應義塾高校の問題

単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a+b+c= \frac{1}{3}$ , $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$のとき
(a-1)(b-1)(c-1)=
慶應義塾高等学校
この動画を見る
$a+b+c= \frac{1}{3}$ , $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$のとき
(a-1)(b-1)(c-1)=
慶應義塾高等学校
【数Ⅰ】軸が動く2次関数の最大最小【図を動かしながら場合分け】

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ y=x^2-4ax+a(0 \leqq x \leqq 2)
の最小値および最大値を求めよ.$
この動画を見る
$ y=x^2-4ax+a(0 \leqq x \leqq 2)
の最小値および最大値を求めよ.$
長方形と半円 3通りで解説しました

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
長方形の面積=?
*図は動画内参照
この動画を見る
長方形の面積=?
*図は動画内参照
福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積

単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#微分法と積分法#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$$a,k$を実数とし、xの関数$f(x),\ g(x)$を次のようにする。
$f(x)=x^3-ax, g(x)=|x|+k$
(1)$a=4,\ k=0$のとき、曲線$y=f(x)$と$y=g(x)$は3個の異なる共有点をもつ。
それぞれの交点のx座標は$-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}$である。
(2)$k=0$のとき、曲線$y=f(x)$と$y=g(x)$がちょうど2個の異なる共有点をもつ
aの範囲は$\boxed{\ \ ウ\ \ }$かつ$\boxed{\ \ エ\ \ }$である。
(3)$a=4$のとき、曲線$y=f(x)$と$y=g(x)$が3個の異なる共有点をもつkの範囲は
$-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }$である。
(4)$a=4,\ k=\boxed{\ \ コ\ \ }$のとき、曲線$y=f(x)$と$y=g(x)$の共有点のx座標は$-\boxed{\ \ サ\ \ }$
と$\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}$であり、$y=f(x)$と$y=g(x)$で囲まれる図形の面積は
$\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}$である。
$\boxed{\ \ ウ\ \ }$の解答群
$⓪-2 \lt a ①-2 \leqq a ②-1 \lt a ③-1 \leqq a ④0 \lt a$
$⑤0 \leqq a ⑥1 \lt a ⑦1 \leqq a ⑧2 \lt a ⑨2 \leqq a$
$\boxed{\ \ エ\ \ }$の解答群
$⓪a \lt -2 ①a \leqq -2 ②a \lt -1 ③a \leqq -1 ④a \lt 0$
$⑤a \leqq 0 ⑥a \lt 1 ⑦a \leqq 1 ⑧a \lt 2 ⑨a \leqq 2$
2021明治大学全統過去問
この動画を見る
${\Large\boxed{2}}$$a,k$を実数とし、xの関数$f(x),\ g(x)$を次のようにする。
$f(x)=x^3-ax, g(x)=|x|+k$
(1)$a=4,\ k=0$のとき、曲線$y=f(x)$と$y=g(x)$は3個の異なる共有点をもつ。
それぞれの交点のx座標は$-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}$である。
(2)$k=0$のとき、曲線$y=f(x)$と$y=g(x)$がちょうど2個の異なる共有点をもつ
aの範囲は$\boxed{\ \ ウ\ \ }$かつ$\boxed{\ \ エ\ \ }$である。
(3)$a=4$のとき、曲線$y=f(x)$と$y=g(x)$が3個の異なる共有点をもつkの範囲は
$-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }$である。
(4)$a=4,\ k=\boxed{\ \ コ\ \ }$のとき、曲線$y=f(x)$と$y=g(x)$の共有点のx座標は$-\boxed{\ \ サ\ \ }$
と$\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}$であり、$y=f(x)$と$y=g(x)$で囲まれる図形の面積は
$\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}$である。
$\boxed{\ \ ウ\ \ }$の解答群
$⓪-2 \lt a ①-2 \leqq a ②-1 \lt a ③-1 \leqq a ④0 \lt a$
$⑤0 \leqq a ⑥1 \lt a ⑦1 \leqq a ⑧2 \lt a ⑨2 \leqq a$
$\boxed{\ \ エ\ \ }$の解答群
$⓪a \lt -2 ①a \leqq -2 ②a \lt -1 ③a \leqq -1 ④a \lt 0$
$⑤a \leqq 0 ⑥a \lt 1 ⑦a \leqq 1 ⑧a \lt 2 ⑨a \leqq 2$
2021明治大学全統過去問
福田のわかった数学〜高校1年生058〜図形の計量(8)正四面体の外接球の半径

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(9)
1辺の長さがaである正四面体の各頂点を通る外接球の半径を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(9)
1辺の長さがaである正四面体の各頂点を通る外接球の半径を求めよ。
22.5°

単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$AO^2 =?$
*図は動画内参照
開成高等学校
この動画を見る
$AO^2 =?$
*図は動画内参照
開成高等学校
福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(3)〜九九の表の平均と分散

単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)九九の表(1の段から9の段まで)に現れる81個の数の平均値$\boxed{\ \ シス\ \ }$であり、
分散は小数第一位を四捨五入して整数で求めると$\boxed{\ \ セソタ\ \ }$である。
2021明治大学全統過去問
この動画を見る
${\Large\boxed{1}}$(3)九九の表(1の段から9の段まで)に現れる81個の数の平均値$\boxed{\ \ シス\ \ }$であり、
分散は小数第一位を四捨五入して整数で求めると$\boxed{\ \ セソタ\ \ }$である。
2021明治大学全統過去問
ざ・挟み撃ち

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\sqrt{n^4+1}}+\dfrac{2}{\sqrt{n^4+2}}+・・・・・・+\dfrac{n}{\sqrt{n^4+n}}$
$\displaystyle \lim_{n\to \infty} \displaystyle \sum_{k=1}^{n}\dfrac{k}{\sqrt{n^4+k}}$
$a_n=\displaystyle \sum_{k=1}^n \dfrac{n}{\sqrt{k}}$
$b_n=\displaystyle \sum_{k=1}^n \dfrac{1}{\sqrt{2k+1}}$
$\displaystyle \lim_{n\to \infty} a_n,\displaystyle \lim_{n\to \infty}\dfrac{bn}{an}$を求めよ.
東大1990過去問
この動画を見る
$\dfrac{1}{\sqrt{n^4+1}}+\dfrac{2}{\sqrt{n^4+2}}+・・・・・・+\dfrac{n}{\sqrt{n^4+n}}$
$\displaystyle \lim_{n\to \infty} \displaystyle \sum_{k=1}^{n}\dfrac{k}{\sqrt{n^4+k}}$
$a_n=\displaystyle \sum_{k=1}^n \dfrac{n}{\sqrt{k}}$
$b_n=\displaystyle \sum_{k=1}^n \dfrac{1}{\sqrt{2k+1}}$
$\displaystyle \lim_{n\to \infty} a_n,\displaystyle \lim_{n\to \infty}\dfrac{bn}{an}$を求めよ.
東大1990過去問
福田のわかった数学〜高校1年生057〜図形の計量(8)正四面体の内接球の半径

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(8)
1辺の長さがaの正四面体の各面に接する内接球の半径を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(8)
1辺の長さがaの正四面体の各面に接する内接球の半径を求めよ。
因数分解の全パターン③【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
(1)$2x^2-10xy-48y^2$
(2)$a^3+27b^3$
(3)$x^3+3x^2+3x+1$
(4)$(x^2-3x)(x^2-3x-2)-8$
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(7)$x^2+5xy+5x+6y^2+11y+4$
(8)$2x^2-3xy-2y^2+x+3y-1$
(9)$x^4-5x^2+4$
(10)$x^4+x^2+1$
(11)$x^4-6x^2+1$
(12)$(x+1)(x+3)(x+5)(x+7)+15$
(13)$(a+b)c^2+(b+c)a^2+(c+a)b^2+2abc$
(14)$x^3+y^3+z^3-3xyz$
この動画を見る
次の式を因数分解せよ。
(1)$2x^2-10xy-48y^2$
(2)$a^3+27b^3$
(3)$x^3+3x^2+3x+1$
(4)$(x^2-3x)(x^2-3x-2)-8$
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(7)$x^2+5xy+5x+6y^2+11y+4$
(8)$2x^2-3xy-2y^2+x+3y-1$
(9)$x^4-5x^2+4$
(10)$x^4+x^2+1$
(11)$x^4-6x^2+1$
(12)$(x+1)(x+3)(x+5)(x+7)+15$
(13)$(a+b)c^2+(b+c)a^2+(c+a)b^2+2abc$
(14)$x^3+y^3+z^3-3xyz$
別に積分しろとは言ってません。(広陵(改))

単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
SとTどっちの面積が大きい?
*図は動画内参照
広陵高等学校
この動画を見る
SとTどっちの面積が大きい?
*図は動画内参照
広陵高等学校
【中学数学】因数分解のテクニック~マル秘必殺技~ 3-3【中3数学】

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の式を因数分解せよ
$x^2-24x+60$
この動画を見る
次の式を因数分解せよ
$x^2-24x+60$
参りました。。。気付けば一瞬でした

福田のわかった数学〜高校1年生056〜図形の計量(7)等面四面体の体積

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(7)
4つの面のどれも3辺の長さが
5,6,7の三角形である四面体
(等面四面体)の体積を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(7)
4つの面のどれも3辺の長さが
5,6,7の三角形である四面体
(等面四面体)の体積を求めよ。
【中学数学】ルートの問題演習~代入する問題のテクニック~ 2-11【中3数学】

単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x=2-\sqrt{3}$のとき、$x^2-4x-1$の値を求めよ
この動画を見る
$x=2-\sqrt{3}$のとき、$x^2-4x-1$の値を求めよ
17滋賀県教員採用試験(数学:4番 実数解の個数)

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$k:$定数
方程式$k(x-1)^2=|x|$の異なる実数解の個数を調べよ。
出典:滋賀県教員採用試験
この動画を見る
$k:$定数
方程式$k(x-1)^2=|x|$の異なる実数解の個数を調べよ。
出典:滋賀県教員採用試験
解けそうで解けない三角形の面積 城北

単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△OAB=?
*図は動画内参照
城北高等学校
この動画を見る
△OAB=?
*図は動画内参照
城北高等学校
福田のわかった数学〜高校1年生055〜図形の計量(6)正四面体の体積

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(6)
一辺の長さがaの正四面体の体積を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(6)
一辺の長さがaの正四面体の体積を求めよ。
暗算でも出せるかな?早くも2022問題。x^2022+x^-2022の値

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$x^2+\dfrac{1}{x^2}=1$
②$x^4+\dfrac{1}{x^4}=1$
それぞれ$x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
この動画を見る
①$x^2+\dfrac{1}{x^2}=1$
②$x^4+\dfrac{1}{x^4}=1$
それぞれ$x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
スッキリだそう

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c=1$
$a^2+b^2+c^2=2$
$a^3+b^3+c^3=3$
$a^4+b^4+c^4=\Box$
$a^5*b^5+c^5=\Box$
$\Box$を求めよ.
この動画を見る
$a+b+c=1$
$a^2+b^2+c^2=2$
$a^3+b^3+c^3=3$
$a^4+b^4+c^4=\Box$
$a^5*b^5+c^5=\Box$
$\Box$を求めよ.
【数Ⅰ】数と式:複2次式の因数分解

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を因数分解しよう。
(1)$x^4+x^2+1$
(2)$x^4+4x^2+16$
この動画を見る
次の式を因数分解しよう。
(1)$x^4+x^2+1$
(2)$x^4+4x^2+16$
福田の数学〜上智大学2021年TEAP利用理系第2問〜集合の要素と包含関係

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$実数からなる集合A,B,Cを次のように定義する。ただし、$a \gt 0$
$A=\left\{x |\ |x| \lt a \right\}$
$B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}$
$C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}$
(1)$A \cap B$が空集合であるための必要十分条件は$a \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }$である。
(2)$A \supset B$であるための必要十分条件は$a \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }$である。
$\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }$の選択肢$:(\textrm{a})= (\textrm{b})\lt (\textrm{c})\leqq (\textrm{d})\gt (\textrm{e})\geqq (\textrm{f})\neq$
$\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }$の選択肢$:(\textrm{a})1 (\textrm{b})2 (\textrm{c})3 (\textrm{d})5 (\textrm{e})7 (\textrm{f})10$
($\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7$
(3)$-1 \boxed{\ \ き\ \ }C$であり、$5 \boxed{\ \ く\ \ }C$である。
$\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }$の選択肢$:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset$
(4)Cに属する整数は$\boxed{\ \ オ\ \ }$個ある。
(5)$A \subset C$となるaのうち、整数で最大のものは$\boxed{\ \ カ\ \ }$である。
(6)$A \supset C$となるaのうち、整数で最小のものは$\boxed{\ \ キ\ \ }$である。
2021上智大学理系過去問
この動画を見る
${\Large\boxed{2}}$実数からなる集合A,B,Cを次のように定義する。ただし、$a \gt 0$
$A=\left\{x |\ |x| \lt a \right\}$
$B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}$
$C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}$
(1)$A \cap B$が空集合であるための必要十分条件は$a \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }$である。
(2)$A \supset B$であるための必要十分条件は$a \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }$である。
$\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }$の選択肢$:(\textrm{a})= (\textrm{b})\lt (\textrm{c})\leqq (\textrm{d})\gt (\textrm{e})\geqq (\textrm{f})\neq$
$\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }$の選択肢$:(\textrm{a})1 (\textrm{b})2 (\textrm{c})3 (\textrm{d})5 (\textrm{e})7 (\textrm{f})10$
($\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7$
(3)$-1 \boxed{\ \ き\ \ }C$であり、$5 \boxed{\ \ く\ \ }C$である。
$\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }$の選択肢$:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset$
(4)Cに属する整数は$\boxed{\ \ オ\ \ }$個ある。
(5)$A \subset C$となるaのうち、整数で最大のものは$\boxed{\ \ カ\ \ }$である。
(6)$A \supset C$となるaのうち、整数で最小のものは$\boxed{\ \ キ\ \ }$である。
2021上智大学理系過去問
【数Ⅰ】2次関数:2次不等式 解から定数の決定

単元:
#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次不等式$ax^2+8x+b>0$の解が、$-1<x<5$のとき、a,bの値を求めよう。
この動画を見る
2次不等式$ax^2+8x+b>0$の解が、$-1<x<5$のとき、a,bの値を求めよう。
福田のわかった数学〜高校1年生054〜図形の計量(5)四面体の体積(1)

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(5)
四面体ABCDについて、
$AB=8,\ BC=4,\ CD=5,\ DA=8,\ BD=6,\ AC=8$
のとき体積を求めよ。
この動画を見る
数学$\textrm{I}$ 図形の計量(5)
四面体ABCDについて、
$AB=8,\ BC=4,\ CD=5,\ DA=8,\ BD=6,\ AC=8$
のとき体積を求めよ。
筑駒だけど気付けば一瞬!!

単元:
#算数(中学受験)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#過去問解説(学校別)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2つの三角形の面積の和=?
*図は動画内参照
筑波大学附属駒場中学校
この動画を見る
2つの三角形の面積の和=?
*図は動画内参照
筑波大学附属駒場中学校
1996 平成8年 大阪府

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
▢内に+-×÷のいずれかの記号を入れる。(同じ記号は何度使ってもよい)
$\sqrt{1▢9▢9▢6} =8$
1991大阪府
この動画を見る
▢内に+-×÷のいずれかの記号を入れる。(同じ記号は何度使ってもよい)
$\sqrt{1▢9▢9▢6} =8$
1991大阪府
