周角と円に内接する四角形・円と接線・接弦定理
面積が最小となるとき
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#平面図形#角度と面積#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
点Pは$\stackrel{\huge\frown}{AB}$上を動く
斜線部の面積が最小となるとき四角形OCPDの面積は?
*図は動画内参照
川端高校
この動画を見る
点Pは$\stackrel{\huge\frown}{AB}$上を動く
斜線部の面積が最小となるとき四角形OCPDの面積は?
*図は動画内参照
川端高校
円と台形
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
台形ABCDの高さは?
*図は動画内参照
香川県
この動画を見る
台形ABCDの高さは?
*図は動画内参照
香川県
座標平面 円と接線 中央大杉並
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
y=ax
a=?
*図は動画内参照
中央大学杉並高等学校
この動画を見る
y=ax
a=?
*図は動画内参照
中央大学杉並高等学校
長方形と円 愛知県
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
長方形ABCDの面積=?
*図は動画内参照
愛知県
この動画を見る
長方形ABCDの面積=?
*図は動画内参照
愛知県
平行四辺形と円 東大寺学園
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
平行四辺形の面積=?
*図は動画内参照
東大寺学園高等学校
この動画を見る
平行四辺形の面積=?
*図は動画内参照
東大寺学園高等学校
半円 愛光高校
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
MN=?
*図は動画内参照
愛光学園
この動画を見る
MN=?
*図は動画内参照
愛光学園
意外に間違えている。。半球の体積 表面積 兵庫県
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#立体図形#体積・表面積・回転体・水量・変化のグラフ
指導講師:
数学を数楽に
問題文全文(内容文):
半球の体積と表面積を求めよ
*図は動画内参照
兵庫県
この動画を見る
半球の体積と表面積を求めよ
*図は動画内参照
兵庫県
ビビったら負け 正四角錐の内接球の半径 立命館高校
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
球Oの半径は?
*球Oが正四角錐の内部の全ての面に接している。
*図は動画内参照
立命館高等学校
この動画を見る
球Oの半径は?
*球Oが正四角錐の内部の全ての面に接している。
*図は動画内参照
立命館高等学校
福田の数学〜立教大学2022年経済学部第3問〜放物線と円と直線で囲まれた面積
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
Oを原点とする座標平面上の放物線$C:y=x^2$とC上の点P$(\frac{\sqrt3}{2}, \ \frac{3}{4})$がある。
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。
(1)mの方程式を$y=px+q$とするとき、定数p,qの値を求めよ。
(2)Qの座標を$(a,\ 0)$とするとき、aの値を求めよ。
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。
$x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2$
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域
の面積S_2を求めよ。
$0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2$
2022立教学部経済学部過去問
この動画を見る
Oを原点とする座標平面上の放物線$C:y=x^2$とC上の点P$(\frac{\sqrt3}{2}, \ \frac{3}{4})$がある。
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。
(1)mの方程式を$y=px+q$とするとき、定数p,qの値を求めよ。
(2)Qの座標を$(a,\ 0)$とするとき、aの値を求めよ。
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。
$x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2$
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域
の面積S_2を求めよ。
$0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2$
2022立教学部経済学部過去問
2つの円と正方形
おうぎ形の折り返し 東工大附属
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
何度?
*図は動画内参照
東京工業大学附属科学技術高等学校
この動画を見る
何度?
*図は動画内参照
東京工業大学附属科学技術高等学校
円周角 広島県
気付けば一瞬!! 4分の1円
福田の数学〜明治大学2022年全学部統一入試12AB第3問〜漸化式の図形への応用
単元:
#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
(1)三角形$ABC$の内接円が辺$AB$と接する点をPとし、
辺$BC$と接する点を$Q$とし、辺$CA$と接する点をRとする。
$\angle A$の大きさを$θ$とすると、$\angle APR=\boxed{ア}$であり、
$\angle PQR=\boxed{ア}$である。
$\boxed{ア}$の解答群
$⓪0 ①\frac{\pi}{2} ②θ ③\frac{θ}{2} ④\frac{\pi}{2}-θ ⑤\frac{\pi-θ}{2}$
$⑥\pi-\frac{θ}{2} ⑦\pi-θ ⑧\frac{\pi-3θ}{2} ⑨\frac{\pi}{2}-3θ$
(2)三角形$T_1$の3つの角のうち、角の大きさが最小のものは$\frac{\pi}{6}$で、
最大のものは$\frac{\pi}{2}$であるとする。
$n=1,\ 2,\ 3,\ ...$について、三角形$T_n$の内接円を$O_n$とし、
$T_n$と$O_n$とが接する3つの点を頂点とするような三角形を$T_{n+1}$とする。
このとき、三角形$T_2$の3つの角のうち、
角の大きさが最小のものは$\frac{\pi}{\boxed{イ}}$で、
最大のものは$\frac{\boxed{ウ}\ \pi}{\boxed{エオ}}$である。
$n=1,\ 2,\ 3,\ ...$について、三角形$T_n$の3つの角のうち、
角の大きさが最小のものを$a_n$とし、最大のものを$b_n$とする。三角形$T_{n+1}$について、
$a_{n+1}=\boxed{カ},\ \ \ b_{n+1}=\boxed{キ}$
と表せる。この式より
$a_n+b_n=\frac{\boxed{ク}}{\boxed{ケ}}\pi,$
$b_n-a_n=\frac{\pi}{\boxed{コ}・\boxed{サ}^{n-1}}$
であり、$a_n=\frac{\pi}{\boxed{シ}}(1-\frac{1}{\boxed{ス}^n}) $である。
$\boxed{カ}、\boxed{キ}$の解答群
$⓪\frac{a_n}{2} ①\frac{b_n}{2} ②\frac{\pi}{2}-a_n ③\frac{\pi}{2}-b_n ④\frac{\pi-a_n}{2}$
$⑤\frac{\pi-b_n}{2} ⑥\pi-\frac{a_n}{2} ⑦\pi-\frac{b_n}{2} ⑧\pi-a_n ⑨\pi-b_n$
2022明治大学全統過去問
この動画を見る
(1)三角形$ABC$の内接円が辺$AB$と接する点をPとし、
辺$BC$と接する点を$Q$とし、辺$CA$と接する点をRとする。
$\angle A$の大きさを$θ$とすると、$\angle APR=\boxed{ア}$であり、
$\angle PQR=\boxed{ア}$である。
$\boxed{ア}$の解答群
$⓪0 ①\frac{\pi}{2} ②θ ③\frac{θ}{2} ④\frac{\pi}{2}-θ ⑤\frac{\pi-θ}{2}$
$⑥\pi-\frac{θ}{2} ⑦\pi-θ ⑧\frac{\pi-3θ}{2} ⑨\frac{\pi}{2}-3θ$
(2)三角形$T_1$の3つの角のうち、角の大きさが最小のものは$\frac{\pi}{6}$で、
最大のものは$\frac{\pi}{2}$であるとする。
$n=1,\ 2,\ 3,\ ...$について、三角形$T_n$の内接円を$O_n$とし、
$T_n$と$O_n$とが接する3つの点を頂点とするような三角形を$T_{n+1}$とする。
このとき、三角形$T_2$の3つの角のうち、
角の大きさが最小のものは$\frac{\pi}{\boxed{イ}}$で、
最大のものは$\frac{\boxed{ウ}\ \pi}{\boxed{エオ}}$である。
$n=1,\ 2,\ 3,\ ...$について、三角形$T_n$の3つの角のうち、
角の大きさが最小のものを$a_n$とし、最大のものを$b_n$とする。三角形$T_{n+1}$について、
$a_{n+1}=\boxed{カ},\ \ \ b_{n+1}=\boxed{キ}$
と表せる。この式より
$a_n+b_n=\frac{\boxed{ク}}{\boxed{ケ}}\pi,$
$b_n-a_n=\frac{\pi}{\boxed{コ}・\boxed{サ}^{n-1}}$
であり、$a_n=\frac{\pi}{\boxed{シ}}(1-\frac{1}{\boxed{ス}^n}) $である。
$\boxed{カ}、\boxed{キ}$の解答群
$⓪\frac{a_n}{2} ①\frac{b_n}{2} ②\frac{\pi}{2}-a_n ③\frac{\pi}{2}-b_n ④\frac{\pi-a_n}{2}$
$⑤\frac{\pi-b_n}{2} ⑥\pi-\frac{a_n}{2} ⑦\pi-\frac{b_n}{2} ⑧\pi-a_n ⑨\pi-b_n$
2022明治大学全統過去問
仙台育英 正四面体の内接球の半径
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
内接球の半径=?
*図は動画内参照
仙台育英学園高等学校
この動画を見る
内接球の半径=?
*図は動画内参照
仙台育英学園高等学校
福田の数学〜早稲田大学2022年社会科学部第2問〜平面幾何と3次関数の増減
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$AB=AC=1,\ BC=a$の二等辺三角形$ABC$の内接円を$I$、外接円を$O$とする。
ただし、$0 \lt a \lt \sqrt2$ である。また、三角形$ABC$と円$I$の3つの接点を頂点とする
三角形を$T$、3点$A,\ B,\ C$で円$O$に外接する三角形を$U$とする。次の問いに答えよ。
(1)三角形$T$の、$BC$に平行な辺の長さ$t$を$a$で表せ。
(2)三角形$U$の、$BC$に平行な辺の長さ$u$を$a$で表せ。
(3)$\frac{t}{u}=p$とする。$p$が最大となる$a$の値と、そのときの$p$の値を求めよ。
2022早稲田大学社会科学部過去問
この動画を見る
$AB=AC=1,\ BC=a$の二等辺三角形$ABC$の内接円を$I$、外接円を$O$とする。
ただし、$0 \lt a \lt \sqrt2$ である。また、三角形$ABC$と円$I$の3つの接点を頂点とする
三角形を$T$、3点$A,\ B,\ C$で円$O$に外接する三角形を$U$とする。次の問いに答えよ。
(1)三角形$T$の、$BC$に平行な辺の長さ$t$を$a$で表せ。
(2)三角形$U$の、$BC$に平行な辺の長さ$u$を$a$で表せ。
(3)$\frac{t}{u}=p$とする。$p$が最大となる$a$の値と、そのときの$p$の値を求めよ。
2022早稲田大学社会科学部過去問
接線といったら〇〇定理
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BC=?
*図は動画内参照
東大寺学園高等学校
この動画を見る
BC=?
*図は動画内参照
東大寺学園高等学校
円と八角形と角の和
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle a + \angle c + \angle e + \angle g = ?$
*図は動画内参照
この動画を見る
$\angle a + \angle c + \angle e + \angle g = ?$
*図は動画内参照
補助線引ける? 正方形と半円
ロニー先生再生リストあります
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正方形ABCDの面積をR、rで表せ。
*図は動画内参照
この動画を見る
正方形ABCDの面積をR、rで表せ。
*図は動画内参照
福田の数学〜慶應義塾大学2022年総合政策学部第5問〜等脚台形の外接円の中心の位置ベクトル
単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ いま、ADを下底、BCを上底とする台形ABCDにおいて、\angle BAD=\angle CDA=60°,\\
|\overrightarrow{ AB }|=2,|\overrightarrow{ BC }|=1となっている。\\
\\
(1)|\overrightarrow{ BD }|=\sqrt{\boxed{\ \ アイ\ \ }}\ であり、台形ABCDの外接円の半径は\frac{\sqrt{\boxed{\ \ ウエ\ \ }}}{\boxed{\ \ オカ\ \ }}である。\\
\\
(2)外接円の中心をOとするとき、内積\overrightarrow{ AB }・\overrightarrow{ AO }=\boxed{\ \ キク\ \ },\overrightarrow{ AD }・\overrightarrow{ AO }=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(3)\overrightarrow{ AO }=\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ \overrightarrow{ AB }+\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \overrightarrow{ AD }\ である。
\end{eqnarray}
2022慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{5}}\ いま、ADを下底、BCを上底とする台形ABCDにおいて、\angle BAD=\angle CDA=60°,\\
|\overrightarrow{ AB }|=2,|\overrightarrow{ BC }|=1となっている。\\
\\
(1)|\overrightarrow{ BD }|=\sqrt{\boxed{\ \ アイ\ \ }}\ であり、台形ABCDの外接円の半径は\frac{\sqrt{\boxed{\ \ ウエ\ \ }}}{\boxed{\ \ オカ\ \ }}である。\\
\\
(2)外接円の中心をOとするとき、内積\overrightarrow{ AB }・\overrightarrow{ AO }=\boxed{\ \ キク\ \ },\overrightarrow{ AD }・\overrightarrow{ AO }=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(3)\overrightarrow{ AO }=\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ \overrightarrow{ AB }+\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \overrightarrow{ AD }\ である。
\end{eqnarray}
2022慶應義塾大学総合政策学部過去問
良問!!円の半径を求める 2022和歌山県ラスト問題
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
3点A,P,Qを通る円の半径は?
*図は動画内参照
2022和歌山県
この動画を見る
3点A,P,Qを通る円の半径は?
*図は動画内参照
2022和歌山県
気付けば一瞬!!普連土学園
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照
普連土学園高等学校
この動画を見る
斜線部の面積は?
*図は動画内参照
普連土学園高等学校
半円と2つの合同な長方形
単元:
#数Ⅰ#数A#図形の性質#図形と計量#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2つの長方形は合同
a:b=?
*図は動画内参照
この動画を見る
2つの長方形は合同
a:b=?
*図は動画内参照
正方形と円と正方形 算数です
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
*四角形は正方形
斜線部の面積は?
*図は動画内参照
この動画を見る
*四角形は正方形
斜線部の面積は?
*図は動画内参照
半円と正方形
2つの円
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
*2つの正方形
$a^2+b^2=96$
$O_1O_2=?$
*図は動画内参照
この動画を見る
*2つの正方形
$a^2+b^2=96$
$O_1O_2=?$
*図は動画内参照
福田の入試問題解説〜北海道大学2022年文系第3問〜直角三角形と内接円
単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ \angle A=90°,\angle B=60°である直角三角形ABCにおいて、\\
その内接円の中心をO、半径をrとおく。またa=BCとする。\\
(1)rをaで表せ。\\
(2)次の条件を満たす負でない整数k,l,m,nの組を一つ求めよ。\\
OA:OB=1:k+\sqrt{l}, OA:OC=1:m+\sqrt{n}
\end{eqnarray}
2022北海道大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ \angle A=90°,\angle B=60°である直角三角形ABCにおいて、\\
その内接円の中心をO、半径をrとおく。またa=BCとする。\\
(1)rをaで表せ。\\
(2)次の条件を満たす負でない整数k,l,m,nの組を一つ求めよ。\\
OA:OB=1:k+\sqrt{l}, OA:OC=1:m+\sqrt{n}
\end{eqnarray}
2022北海道大学文系過去問
福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ xy平面の第1象限内において、直線l:y=mx (m \gt 0)とx軸の両方に\\
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t \gt 0)を考える。\\
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。\\
ただし、b \gt aとする。\\
(1)mを用いてtを表せ。\\
(2)tを用いて\frac{b}{a}を表せ。\\
(3)極限値\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)を求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{4}}}\ xy平面の第1象限内において、直線l:y=mx (m \gt 0)とx軸の両方に\\
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t \gt 0)を考える。\\
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。\\
ただし、b \gt aとする。\\
(1)mを用いてtを表せ。\\
(2)tを用いて\frac{b}{a}を表せ。\\
(3)極限値\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)を求めよ。
\end{eqnarray}
2022東北大学理系過去問
正十二角形と円 東工大附属
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
重なった図形の面積は?
*図は動画内参照
2022東京工業大学附属科学技術高等学校
この動画を見る
重なった図形の面積は?
*図は動画内参照
2022東京工業大学附属科学技術高等学校