約数・倍数・整数の割り算と余り・合同式

京都大 3次関数 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
この動画を見る
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
一橋大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a-b-8$と$b-c-8$がともに素数となるような素数の組$(a,b,c)$を全て求めよ
出典:2014年一橋大学 過去問
この動画を見る
$a-b-8$と$b-c-8$がともに素数となるような素数の組$(a,b,c)$を全て求めよ
出典:2014年一橋大学 過去問
整数問題 合同式

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3p^4-5q^4-4r^2=986$
$p,q,r$は異なる素数
この動画を見る
$3p^4-5q^4-4r^2=986$
$p,q,r$は異なる素数
チャレンジチューブ 解答編

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$を全て求めよ
(2)
$x^2+2y^2=11z^2$を満たすすべて2以上の自然数$x,y,z$を1組例示せよ
※追加$x,y,z$互いに素
この動画を見る
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$を全て求めよ
(2)
$x^2+2y^2=11z^2$を満たすすべて2以上の自然数$x,y,z$を1組例示せよ
※追加$x,y,z$互いに素
整数問題

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$8k+7=a^2+b^2+c^2$
(2)
$4^p(8k+7)=a^2+b^2+c^2$
上の式を満たす整数$a,b,c,k,p$は存在しないことを示せ
この動画を見る
(1)
$8k+7=a^2+b^2+c^2$
(2)
$4^p(8k+7)=a^2+b^2+c^2$
上の式を満たす整数$a,b,c,k,p$は存在しないことを示せ
スタディーチューブ 企画「チャレンジチューブVol.5」

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$の組をすべて求めよ
(2)
$a^2+2b^2=11c^2$を満たす全て2以上の自然数$(a,b,c)$
この動画を見る
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$の組をすべて求めよ
(2)
$a^2+2b^2=11c^2$を満たす全て2以上の自然数$(a,b,c)$
九州大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は3の倍数でない整数
$f(x)=2x^3+a^2x^2+2b^2x+1$
(1)
$f(1),f(2)$を3で割った余りは?
(2)
$f(x)=0$は整数解がないことを証明せよ
(3)
$f(x)=0$が有理数解が存在する
$(a,b)$の組をすべて求めよ
出典:2018年九州大学 過去問
この動画を見る
$a,b$は3の倍数でない整数
$f(x)=2x^3+a^2x^2+2b^2x+1$
(1)
$f(1),f(2)$を3で割った余りは?
(2)
$f(x)=0$は整数解がないことを証明せよ
(3)
$f(x)=0$が有理数解が存在する
$(a,b)$の組をすべて求めよ
出典:2018年九州大学 過去問
群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$
(1)
$\displaystyle \sum_{i=1}^n a_i$
(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$
出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
この動画を見る
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$
(1)
$\displaystyle \sum_{i=1}^n a_i$
(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$
出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
お茶の水女子大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数
$a^3+2b^3+4c^3=2abc$
(1)
$a,b,c$はすべて偶数であることを示せ
(2)
$(a,b,c)$を全て求めよ
出典:1985年お茶の水女子大学 過去問
この動画を見る
$a,b,c$は整数
$a^3+2b^3+4c^3=2abc$
(1)
$a,b,c$はすべて偶数であることを示せ
(2)
$(a,b,c)$を全て求めよ
出典:1985年お茶の水女子大学 過去問
宮崎大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n(n^2+a)$がすべての自然数$n$で6の倍数になる$a$の値を求めよ
出典:2019年宮崎大学 過去問
この動画を見る
$n(n^2+a)$がすべての自然数$n$で6の倍数になる$a$の値を求めよ
出典:2019年宮崎大学 過去問
もっちゃんと真面目に数学 素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散のお話

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
この動画を見る
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
一橋大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$(a,b,c)$の組を求めよ。
但し$a$は奇数
$a^4=b^2+2^c$
出典:2018年一橋大学 過去問
この動画を見る
自然数$(a,b,c)$の組を求めよ。
但し$a$は奇数
$a^4=b^2+2^c$
出典:2018年一橋大学 過去問
お茶の水女子大(類) 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^2+3b^2=2c^2$これを満たす自然数$(a,b,c)$は存在しないことを証明せよ
出典:お茶の水女子大学 過去問
この動画を見る
$a^2+3b^2=2c^2$これを満たす自然数$(a,b,c)$は存在しないことを証明せよ
出典:お茶の水女子大学 過去問
早稲田大 整数問題 約数の総積

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$10^n$の正の約数すべての積を求めよ
出典:早稲田大学 過去問
この動画を見る
$10^n$の正の約数すべての積を求めよ
出典:早稲田大学 過去問
Entrance exam for Kyoto University.find all $(p,q)$ that meets $p^q+q^p=$prime number.p,q are prime .

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p^q+q^p=$素数を満たすすべての$(p,q)$を見つけてください。($p,q$は素数)
出典:京都大学 入試問題
この動画を見る
$p^q+q^p=$素数を満たすすべての$(p,q)$を見つけてください。($p,q$は素数)
出典:京都大学 入試問題
連続k個の自然数の積はk!の倍数&整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は奇数
$n^5+2n^3-3n$は96の倍数であることを証明せよ
連続$k$個の自然数の積は$k!$の倍数である
この動画を見る
$n$は奇数
$n^5+2n^3-3n$は96の倍数であることを証明せよ
連続$k$個の自然数の積は$k!$の倍数である
南山大 n!0が100個並ぶ

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。
出典:南山大学 過去問
この動画を見る
$n!$は1の位から連続して100個以上の0が並ぶ。
最小の$n$を求めよ。
出典:南山大学 過去問
整数問題 合同式 二項展開

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
この動画を見る
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
立命館大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ
出典:立命館大学 過去問
この動画を見る
$n^3-m^2n+m^2=0$を満たす整数$(m,n)$をすべて求めよ
出典:立命館大学 過去問
慈恵医大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数$P$は素数、$a,b,c$自然数
$a$は素数
$a(ab-p^2)=C^2,b \leqq 2C$を満たす
(1)
$(a,b,c)$の組の個数を$P$を用いて表せ
(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ
出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る
実数$P$は素数、$a,b,c$自然数
$a$は素数
$a(ab-p^2)=C^2,b \leqq 2C$を満たす
(1)
$(a,b,c)$の組の個数を$P$を用いて表せ
(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ
出典:2017年東京慈恵会医科大学附属病院 過去問
学習院大 整数問題

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m^2=2^n+1$を満たす自然数$(m,n)$をすべて求めよ
出典:学習院大学 過去問
この動画を見る
$m^2=2^n+1$を満たす自然数$(m,n)$をすべて求めよ
出典:学習院大学 過去問
【数A】整数の性質:3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材:
#サクシード#サクシード数学Ⅰ・A#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
この動画を見る
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
千葉大 漸化式 証明

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
この動画を見る
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
岡山県立大 整数問題 合同式

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
(1)
$n(n^2+5)$は6の倍数であることを示せ
(2)
$3^{6n}$を7で割ると余りが1であることを示せ
出典:2008年岡山県立大学 過去問
この動画を見る
$n$自然数
(1)
$n(n^2+5)$は6の倍数であることを示せ
(2)
$3^{6n}$を7で割ると余りが1であることを示せ
出典:2008年岡山県立大学 過去問
【数A】整数の性質:互いに素である自然数の個数を丁寧に解説します!

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1~135までの自然数で135と互いに素である自然数の個数は?
この動画を見る
1~135までの自然数で135と互いに素である自然数の個数は?
茨城大 確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを4回振って出た目を順に$a,b,c,d$
(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ
(2)
積$abcd$が4の倍数となる確率を求めよ
出典:2010年茨城大学 過去問
この動画を見る
サイコロを4回振って出た目を順に$a,b,c,d$
(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ
(2)
積$abcd$が4の倍数となる確率を求めよ
出典:2010年茨城大学 過去問
明治大 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n,17n-20,19x-20$がいずれも素数となる2以上の自然数$n$を全て求めよ。
出典:明治大学 過去問
この動画を見る
$n,17n-20,19x-20$がいずれも素数となる2以上の自然数$n$を全て求めよ。
出典:明治大学 過去問
慶應義塾大 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$自然数
$x^2+5y^2=2016$
出典:慶應義塾 過去問
この動画を見る
$x,y$自然数
$x^2+5y^2=2016$
出典:慶應義塾 過去問
茨城大 整数問題 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$21^{2015}$を$400$で割った余りを求めよ
(2)
$2^{2x+1}+1$は$3$の倍数
出典:茨城大学 過去問
この動画を見る
(1)
$21^{2015}$を$400$で割った余りを求めよ
(2)
$2^{2x+1}+1$は$3$の倍数
出典:茨城大学 過去問
大阪星光学院(改)整数問題

単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#大阪聖光学院高等学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$自然数
$x^2+11y^2=759$
出典:大阪星光学院中学校・高等学校 過去問
この動画を見る
$x,y$自然数
$x^2+11y^2=759$
出典:大阪星光学院中学校・高等学校 過去問