整数の性質
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
整数問題の基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a^2=ab+3$を満たす整数
(a,b)の組をすべて求めよ。
この動画を見る
$a^2=ab+3$を満たす整数
(a,b)の組をすべて求めよ。
福田の数学〜絞り込めればなんとかなる!〜明治大学2023年全学部統一ⅠⅡAB第1問(4)〜不等式を満たす自然数解
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
自然数$m,n$があり、$1\lt m\lt n$とする。
$\displaystyle (m+\frac{1}{n})(n+\frac{1}{m})\leqq 12$
を満たす$(m,n)$を求めよ。
2023明治大学過去問
この動画を見る
自然数$m,n$があり、$1\lt m\lt n$とする。
$\displaystyle (m+\frac{1}{n})(n+\frac{1}{m})\leqq 12$
を満たす$(m,n)$を求めよ。
2023明治大学過去問
どっちがでかい?昨日の反省
【数学A】整数を割った余りを求める問題(整数の性質/数学と人間の活動)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のものを求めよ。
(1)
$5^{100}$を$4$で割った余り
(2)
$15^{50}$を$7$で割った余り
(3)
$3^{30}$を$4$で割った余り
この動画を見る
次のものを求めよ。
(1)
$5^{100}$を$4$で割った余り
(2)
$15^{50}$を$7$で割った余り
(3)
$3^{30}$を$4$で割った余り
等間隔で素数が出現!?
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
5、11、17、23、29は、等間隔で並ぶ5つの整数がすべて素数。
では、等間隔で並ぶ 6つの整数すべてが素数となる組を1つ例示せよ。
この動画を見る
5、11、17、23、29は、等間隔で並ぶ5つの整数がすべて素数。
では、等間隔で並ぶ 6つの整数すべてが素数となる組を1つ例示せよ。
福田の数学〜早稲田大学2023年商学部第1問(2)〜三角形の内接円の半径と不定方程式
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$m,n$は自然数。半径1の円に内接する$\triangle {ABC}$が
$\sin {\angle A}=\require{physics}\flatfrac{m}{17}$、$\sin {\angle B}=\require{physics}\flatfrac{n}{17}$、
$\sin^2\angle C=\sin^2\angle A+\sin^2\angle B$
を満たすとき、$\triangle {ABC}$の内接円の半径は?
2023早稲田大学商学部過去問
この動画を見る
$m,n$は自然数。半径1の円に内接する$\triangle {ABC}$が
$\sin {\angle A}=\require{physics}\flatfrac{m}{17}$、$\sin {\angle B}=\require{physics}\flatfrac{n}{17}$、
$\sin^2\angle C=\sin^2\angle A+\sin^2\angle B$
を満たすとき、$\triangle {ABC}$の内接円の半径は?
2023早稲田大学商学部過去問
約数の基本問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
大阪医科薬(看)
600の正の約数のうち偶数であるものの総和を求めよ.
この動画を見る
大阪医科薬(看)
600の正の約数のうち偶数であるものの総和を求めよ.
整数の基本問題
ちょっと変わった方程式 駒込高校
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$\frac{3}{1-x}+\frac{5}{x-1}=(x+\frac{1}{x})^2 - (x - \frac{1}{x})^2$
この動画を見る
方程式を解け
$\frac{3}{1-x}+\frac{5}{x-1}=(x+\frac{1}{x})^2 - (x - \frac{1}{x})^2$
意外とむずいよ。分数式 方程式 昭和女子大
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{x} + \frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3}= 0$
昭和女子大学附属高等学校
この動画を見る
$\frac{1}{x} + \frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3}= 0$
昭和女子大学附属高等学校
整数の基本問題 島根大
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z^2-z$が6で割り切れるようなすべての奇数$z$を整数$n$を用いて表せ.
島根大過去問
この動画を見る
$z^2-z$が6で割り切れるようなすべての奇数$z$を整数$n$を用いて表せ.
島根大過去問
分母払って解くのは数楽でない。
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{110}{1+x} + \frac{121}{(1+x)^2}=200$
$x=?$
この動画を見る
$\frac{110}{1+x} + \frac{121}{(1+x)^2}=200$
$x=?$
分母払うときは要注意
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{x^3}{x+x+x} = 12$
$x=?$
この動画を見る
$\frac{x^3}{x+x+x} = 12$
$x=?$
複号任意
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$73=m^2+n^2$となる整数m,nの組をすべて求めよ
この動画を見る
$73=m^2+n^2$となる整数m,nの組をすべて求めよ
整式の剰余 あれでもいけるか?上智大
奈良教育大 あまりの問題
整数問題
単元:
#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^6+3n^3-7 = m^4\\を満たす整数(m,n)$
この動画を見る
$n^6+3n^3-7 = m^4\\を満たす整数(m,n)$
信州大(医)整数問題の基本
単元:
#整数の性質#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023信州大学過去問題
3つの自然数P,P+10,P+20がすべて素数となるようなPがただ1つ存在することを示せ
この動画を見る
2023信州大学過去問題
3つの自然数P,P+10,P+20がすべて素数となるようなPがただ1つ存在することを示せ
万能?倍数判定法!実用性は?
整数問題 昭和学院秀英
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{n^2+2n-1}$の値が整数となるような整数nの値をすべて求めよ。
昭和学院秀英高等学校
この動画を見る
$\frac{1}{n^2+2n-1}$の値が整数となるような整数nの値をすべて求めよ。
昭和学院秀英高等学校
パズル!!高槻中
単元:
#数A#整数の性質#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
たて、よこ、ななめ3つの数の積は等しいア~カを0でない整数とするとき、オの値を求めよ。
*図は動画内参照
高槻中学校
この動画を見る
たて、よこ、ななめ3つの数の積は等しいア~カを0でない整数とするとき、オの値を求めよ。
*図は動画内参照
高槻中学校
福田の数学〜上智大学2023年TEAP利用型理系第1問(2)〜桁数の評価
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$(2・7・11・13)^{20}$の桁数は$\boxed{\ \ イ\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$ (2)$(2・7・11・13)^{20}$の桁数は$\boxed{\ \ イ\ \ }$である。
福田の数学〜上智大学2023年TEAP利用型理系第1問(1)〜ユークリッドの互除法
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)44311と43873との最大公約数は$\boxed{\ \ ア\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$ (1)44311と43873との最大公約数は$\boxed{\ \ ア\ \ }$である。
指数の方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\frac{9}{4})^{\frac{9}{4}}=x \sqrt 6$
$x=?$
この動画を見る
$(\frac{9}{4})^{\frac{9}{4}}=x \sqrt 6$
$x=?$
560=⭕️✖️⭕️✖️⭕️✖️⭕️ 沖縄尚学
単元:
#数A#整数の性質#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1けたの自然数を4つかけると560になった。
4つの自然数がすべて異なる自然数であるとき、かけた4つの数を求めよ。
沖縄尚学高等学校
この動画を見る
1けたの自然数を4つかけると560になった。
4つの自然数がすべて異なる自然数であるとき、かけた4つの数を求めよ。
沖縄尚学高等学校
東邦大(理)基本問題
単元:
#整数の性質
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023東邦大学過去問題
p,q整数
α+β =2P
αβ = 4q
$α^n+β^n$は$2^n$で割り切れることを示せ(n=1,2,3,$\cdots$)
この動画を見る
2023東邦大学過去問題
p,q整数
α+β =2P
αβ = 4q
$α^n+β^n$は$2^n$で割り切れることを示せ(n=1,2,3,$\cdots$)
9999の倍数 洛南高校附属中
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
8ケタの整数7A5BC3D1が9999の倍数になるとき
$A=? B=? C=? D=?$
洛南高等学校附属中学校
この動画を見る
8ケタの整数7A5BC3D1が9999の倍数になるとき
$A=? B=? C=? D=?$
洛南高等学校附属中学校
筆算不要!!9999で割ったあまり 洛南高校附属中
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
12340000を9999で割った余りを求めよ
洛南高等学校附属中学校
この動画を見る
12340000を9999で割った余りを求めよ
洛南高等学校附属中学校
福田の数学〜慶應義塾大学2023年理工学部第5問(2)〜不定方程式の整数解
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ (2)$f(x)$=$x-$$\displaystyle\frac{1}{x}$とする。自然数$a$,$b$,$c$の組で$a$≦$b$≦$c$かつ$f(a)$+$f(b)$+$f(c)$が自然数であるものの総数は$\boxed{\ \ ト\ \ }$個である。その中で$f(a)$+$f(b)$+$f(c)$の値が最大になるのは($a$,$b$,$c$)=$\boxed{\ \ ナ\ \ }$のときである。
この動画を見る
$\Large\boxed{5}$ (2)$f(x)$=$x-$$\displaystyle\frac{1}{x}$とする。自然数$a$,$b$,$c$の組で$a$≦$b$≦$c$かつ$f(a)$+$f(b)$+$f(c)$が自然数であるものの総数は$\boxed{\ \ ト\ \ }$個である。その中で$f(a)$+$f(b)$+$f(c)$の値が最大になるのは($a$,$b$,$c$)=$\boxed{\ \ ナ\ \ }$のときである。