整数の性質
高校入試の整数問題 神村学園(鹿児島)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$6<n(n+1)(n+2)<300$を満たす自然数nの個数を求めよ。
神村学園
この動画を見る
$6<n(n+1)(n+2)<300$を満たす自然数nの個数を求めよ。
神村学園
サイコロとルートと確率 履正社(大阪)
単元:
#数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
さいころを2回続けて投げ、1回目に出た目をa、2回目に出た目をbとする。
$\sqrt{a×2^b}$が整数となる確率を求めよ。
履正社高等学校
この動画を見る
さいころを2回続けて投げ、1回目に出た目をa、2回目に出た目をbとする。
$\sqrt{a×2^b}$が整数となる確率を求めよ。
履正社高等学校
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4^P+P^4+4$が素数となる素数Pをすべて求めよ
この動画を見る
$4^P+P^4+4$が素数となる素数Pをすべて求めよ
整数問題
開成高校 整数問題
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
開成高校過去問題
A,B(A<B)は自然数で最大公約数が$g(\neq1)$で最小公倍数がl
$A^2+B^2+g^2+l^2 = 1300$を満たすA,Bを求めよ
この動画を見る
開成高校過去問題
A,B(A<B)は自然数で最大公約数が$g(\neq1)$で最小公倍数がl
$A^2+B^2+g^2+l^2 = 1300$を満たすA,Bを求めよ
福井大 漸化式と整数問題の融合
単元:
#数Ⅰ#整数の性質#約数・倍数・整数の割り算と余り・合同式#漸化式#数学(高校生)#福井大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2010福井大学過去問題
k,n自然数
$a_1=k$
$a_{n+1}=2a_n+1$
①$a_{n+4}-a_n$は15の倍数であることを示せ
②$a_{2010}$が15の倍数となる最小のk
この動画を見る
2010福井大学過去問題
k,n自然数
$a_1=k$
$a_{n+1}=2a_n+1$
①$a_{n+4}-a_n$は15の倍数であることを示せ
②$a_{2010}$が15の倍数となる最小のk
難問!!最大公約数と最小公倍数の関係 西武文理
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2けたの自然数A,B(A<B)があり、AとBの和は48
AとBの最小公倍数と最大公約数の和は96である。
自然数A,Bを求めよ。
西部学園文理高等学校
この動画を見る
2けたの自然数A,B(A<B)があり、AとBの和は48
AとBの最小公倍数と最大公約数の和は96である。
自然数A,Bを求めよ。
西部学園文理高等学校
整数問題 開明高校
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{3}{n+1}$が整数となるような整数nの値をすべて求めよ。
開明高等学校
この動画を見る
$\frac{3}{n+1}$が整数となるような整数nの値をすべて求めよ。
開明高等学校
【数A】互除法 よりも mod ! ②演習編
【数A】互除法 よりも mod ! ①導入編
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$12x+7Y=1$ の特殊解を互除法とmodで計算していきます.
この動画を見る
$12x+7Y=1$ の特殊解を互除法とmodで計算していきます.
大阪公立大 フェルマーの小定理を利用した証明
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023大阪公立大学過去問題
p素数 a,n自然数
$4n^2+4n-1=ap$なら
①2n+1とapは互いに素であることを示せ
②$2^{\frac{p-1}{2}}-1$はpで割り切れることを示せ
この動画を見る
2023大阪公立大学過去問題
p素数 a,n自然数
$4n^2+4n-1=ap$なら
①2n+1とapは互いに素であることを示せ
②$2^{\frac{p-1}{2}}-1$はpで割り切れることを示せ
大阪公立大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023大阪公立大学過去問題
n自然数
$a_n=\frac{5^{2^{n-1}}-1}{2^{n+1}}$
$b_n=\frac{a_{n+1}}{a_n}$
示せ
①$b_n$は整数
②$a_n$は整数
③$a_n$は奇数
この動画を見る
2023大阪公立大学過去問題
n自然数
$a_n=\frac{5^{2^{n-1}}-1}{2^{n+1}}$
$b_n=\frac{a_{n+1}}{a_n}$
示せ
①$b_n$は整数
②$a_n$は整数
③$a_n$は奇数
記数法の基本問題 京都府立大
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2020京都府立大学過去問題
$N = abc_{(5)}$
$= cba_{(6)}$
Nは十進法でいくつ?
この動画を見る
2020京都府立大学過去問題
$N = abc_{(5)}$
$= cba_{(6)}$
Nは十進法でいくつ?
高校入試だけど不定方程式 日大習志野
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$5x+3y=99$を満たす正の整数の組(x,y)は全部で何組ある?
日本大学習志野高等学校
この動画を見る
$5x+3y=99$を満たす正の整数の組(x,y)は全部で何組ある?
日本大学習志野高等学校
大阪市立大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
この動画を見る
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
難関中入試に出そうな問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1×3×5×7・・・×999
=$3^nP(P\not\equiv 0 \mod 3)$
nの値を求めよ.
この動画を見る
1×3×5×7・・・×999
=$3^nP(P\not\equiv 0 \mod 3)$
nの値を求めよ.
大阪市立大 奇数の平方の和
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
この動画を見る
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
ナイスな整数問題 富山大
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023富山大学
z整数,n自然数
$z^{3^{n}}-z^{3^{n-1}}$は$3^n$の倍数である。を次の場合で示せ
①n=1
②n=2
③すべてのn
この動画を見る
2023富山大学
z整数,n自然数
$z^{3^{n}}-z^{3^{n-1}}$は$3^n$の倍数である。を次の場合で示せ
①n=1
②n=2
③すべてのn
4次式の整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
n自然数
$n^4-4n^3+22n^2-36n+18=N^2$
が平方数となるnをすべて求めよ
この動画を見る
n自然数
$n^4-4n^3+22n^2-36n+18=N^2$
が平方数となるnをすべて求めよ
中1も挑戦できる整数問題 大阪教育大附属池田
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1から20までの自然数のうち素数であるものの積をA、素数でないものをBとする
AとBの最大公約数は?
大阪教育大学附属高等学校池田校舎
この動画を見る
1から20までの自然数のうち素数であるものの積をA、素数でないものをBとする
AとBの最大公約数は?
大阪教育大学附属高等学校池田校舎
立教大のナイスな問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023立教大学過去問題
$A=\frac{10^{40}-3^{10}}{9997}$,$B=\frac{10^{36}-3^{9}}{9997}$
①Aの1の位の数
②A-3Bを素因数分解
③AとBの最大公約数
この動画を見る
2023立教大学過去問題
$A=\frac{10^{40}-3^{10}}{9997}$,$B=\frac{10^{36}-3^{9}}{9997}$
①Aの1の位の数
②A-3Bを素因数分解
③AとBの最大公約数
高校入試から整数を一瞬で解説する動画~全国入試問題解法 #shorts #math #数学 #動体視力
単元:
#数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
19で割るとn余る自然数がある.
この自然数を「11倍して1加えた数」も19で割るとn余る文中の自然数をAとする.
nはいくつであるか.
大阪星光高校過去問
この動画を見る
19で割るとn余る自然数がある.
この自然数を「11倍して1加えた数」も19で割るとn余る文中の自然数をAとする.
nはいくつであるか.
大阪星光高校過去問
立方の差でも平方の和でも表せる素数を探せ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$37=4^3-3^3=1^2+6^2$のように
素数$=b^3-a^3=c^2+d^2$(a,b,c,dは自然数)と表せる
素数を37以外に探せ
この動画を見る
$37=4^3-3^3=1^2+6^2$のように
素数$=b^3-a^3=c^2+d^2$(a,b,c,dは自然数)と表せる
素数を37以外に探せ
基本問題 明治大
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
$ab_{(6)}=123_{(a)}$
a,bの値を求めよ
この動画を見る
明治大学過去問題
$ab_{(6)}=123_{(a)}$
a,bの値を求めよ
整数問題 明治大
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
明治大学 過去問
nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
この動画を見る
明治大学 過去問
nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
分数の割り算
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{4}{7} \div \frac{3}{2} = (\frac{4}{7} \times ▢) \div (\frac{3}{2} \times ▢)=$
この動画を見る
$\frac{4}{7} \div \frac{3}{2} = (\frac{4}{7} \times ▢) \div (\frac{3}{2} \times ▢)=$
指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xを求めよ
$9^x+9^x+9^x+9^x=12$
この動画を見る
xを求めよ
$9^x+9^x+9^x+9^x=12$
ラ・サール高校の整数問題
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a,b,c,dは0または正の整数。
\begin{eqnarray}
\left\{
\begin{array}{l}
ad + bc = 2 \\
a + b + c + d = 4
\end{array}
\right.
\end{eqnarray}
を満たす(a,b,c,d)の組はいくつか?
ラ・サール学園
この動画を見る
a,b,c,dは0または正の整数。
\begin{eqnarray}
\left\{
\begin{array}{l}
ad + bc = 2 \\
a + b + c + d = 4
\end{array}
\right.
\end{eqnarray}
を満たす(a,b,c,d)の組はいくつか?
ラ・サール学園
【思考を試す試金石!】整数:筑紫台高等学校~全国入試問題解法
単元:
#数学(中学生)#数A#整数の性質#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
1,2,3,4,5の5つの数字を1回ずつと$ +,-,\times,\div,( )$を自由に使ってできる計算値で
最も大きいものは$\Box $である.
筑紫台高等学校過去問
この動画を見る
1,2,3,4,5の5つの数字を1回ずつと$ +,-,\times,\div,( )$を自由に使ってできる計算値で
最も大きいものは$\Box $である.
筑紫台高等学校過去問
【高校数学に繋がる解答方法!】整数:函館白百合学園高等学校~全国入試問題解法
単元:
#数学(中学生)#数A#整数の性質#高校入試過去問(数学)#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3の倍数より1大きい数の二乗から,
同じ3の倍数より1小さい数の二乗を引いた差は,12の倍数である.
この考えがいつでも成り立つことを説明しなさい.
函館白百合学園高等学校過去問
この動画を見る
3の倍数より1大きい数の二乗から,
同じ3の倍数より1小さい数の二乗を引いた差は,12の倍数である.
この考えがいつでも成り立つことを説明しなさい.
函館白百合学園高等学校過去問