剰余の定理・因数定理・組み立て除法と高次方程式
福田のわかった数学〜高校2年生012〜高次方程式の作成
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$\alpha=\sqrt{13}+\sqrt{9+2\sqrt{17}}+\sqrt{9-2\sqrt{17}}$
を解にもつ整数係数であり$x^4$の係数1の
4次方程式を作れ。また、残りの解を求めよ。
この動画を見る
数学$\textrm{II}$ 高次方程式
$\alpha=\sqrt{13}+\sqrt{9+2\sqrt{17}}+\sqrt{9-2\sqrt{17}}$
を解にもつ整数係数であり$x^4$の係数1の
4次方程式を作れ。また、残りの解を求めよ。
福田のわかった数学〜高校2年生第9回〜高次方程式の有理数解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$a,b,c$を整数とするとき、3次方程式
$x^3+ax^2+bx+c=0$
が有理数解$s$をもつなら、$s$は整数である。
これを示せ。
この動画を見る
数学$\textrm{II}$ 高次方程式
$a,b,c$を整数とするとき、3次方程式
$x^3+ax^2+bx+c=0$
が有理数解$s$をもつなら、$s$は整数である。
これを示せ。
ただの4次方程式 その2
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^4+2x^2-400x=9991$
この動画を見る
これを解け.
$x^4+2x^2-400x=9991$
ただの4次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$(x-1)(x-3)(x-9)(x-27)=56x^2$
この動画を見る
実数解を求めよ.
$(x-1)(x-3)(x-9)(x-27)=56x^2$
慶應(経済)実数解を持たない4次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
次の$4$次方程式が実数解をもたない実数$a$の範囲を求めよ.
$x^4-ax^3+(-2a^2+a+4)x^2+(-2a^2+4a)x$
$+4a=0$
1999慶應(経)
この動画を見る
次の$4$次方程式が実数解をもたない実数$a$の範囲を求めよ.
$x^4-ax^3+(-2a^2+a+4)x^2+(-2a^2+4a)x$
$+4a=0$
1999慶應(経)
福田の1日1題わかった数学〜高校2年生第1回〜高次方程式
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
3次方程式$x^3+ax+b=0$の
3つの解を$\alpha,\beta,\gamma$とし、
$t_n=\alpha^n+\beta^n+\gamma^n$
のとき、$at_5+bt_4$を$a,b$で表せ。
この動画を見る
数学$\textrm{II}$ 高次方程式
3次方程式$x^3+ax+b=0$の
3つの解を$\alpha,\beta,\gamma$とし、
$t_n=\alpha^n+\beta^n+\gamma^n$
のとき、$at_5+bt_4$を$a,b$で表せ。
ただの3次方程式 複数の解法で
方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$x$を実数とする.
$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
この動画を見る
これを解け.$x$を実数とする.
$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
2021同志社大 4次方程式4つの虚数解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$c$は実数であり,定数である.
$x^4+cx^3+cx^2+cx+1=0$の$4$つの解がすべて虚数となる.$c$の必要十分条件である.
$4$つの虚数解が複素平面上で正方形になる$c$の値を求めよ.
2021同志社過去問
この動画を見る
$c$は実数であり,定数である.
$x^4+cx^3+cx^2+cx+1=0$の$4$つの解がすべて虚数となる.$c$の必要十分条件である.
$4$つの虚数解が複素平面上で正方形になる$c$の値を求めよ.
2021同志社過去問
2021早稲田 4次方程式の解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^4+5x^3-3x^2+4x+2=0$は$\dfrac{1+\sqrt3 i}{2}$を解にもつ.
実数解を求めよ.
2021早稲田(教)
この動画を見る
$x^4+5x^3-3x^2+4x+2=0$は$\dfrac{1+\sqrt3 i}{2}$を解にもつ.
実数解を求めよ.
2021早稲田(教)
明治大 3倍角の公式と3次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.
2020明治大過去問
この動画を見る
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.
2020明治大過去問
2021東京医科大学 そんなやり方もあるか!4次方程式の解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^4+11x^3+31x^2+11x+1=0$の$4$つの解を$\alpha,\beta,\delta,\zeta$とする.
$x+\dfrac{1}{x}=y$として,$y$の方程式を求めよ.
①$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\delta}+\dfrac{1}{\zeta}$
②$\alpha^2+\beta^2+\delta^2+\zeta^2$
③$\alpha^3+\beta^3+\delta^3+\zeta^3$
2021東京医科大過去問
この動画を見る
$x^4+11x^3+31x^2+11x+1=0$の$4$つの解を$\alpha,\beta,\delta,\zeta$とする.
$x+\dfrac{1}{x}=y$として,$y$の方程式を求めよ.
①$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\delta}+\dfrac{1}{\zeta}$
②$\alpha^2+\beta^2+\delta^2+\zeta^2$
③$\alpha^3+\beta^3+\delta^3+\zeta^3$
2021東京医科大過去問
2021久留米大(医)三次方程式と複素平面
単元:
#数Ⅱ#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.
2021久留米(医)
この動画を見る
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.
2021久留米(医)
式の値
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x+\dfrac{1}{x}=\sqrt3$のとき,$x^{18}+x^{12}+x^6+1$の値を求めよ.
この動画を見る
$x+\dfrac{1}{x}=\sqrt3$のとき,$x^{18}+x^{12}+x^6+1$の値を求めよ.
3次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$126x^3-3x^2+3x-1=0$
この動画を見る
これを解け.
$126x^3-3x^2+3x-1=0$
4次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4$つの解を求めよ.
$(x-7.5)^4+(x-8.5)^4=1$
この動画を見る
$4$つの解を求めよ.
$(x-7.5)^4+(x-8.5)^4=1$
4次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x^2+2x-6)^2+2(x^2+2x-6)-6=x$
この動画を見る
これを解け.
$(x^2+2x-6)^2+2(x^2+2x-6)-6=x$
剰余
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$111^{2021}$を$1111$で割った余りを求めよ.
この動画を見る
$111^{2021}$を$1111$で割った余りを求めよ.
武蔵工業大 6次方程式の解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z^6+z^3+1=0$を満たす複素数$z$の偏角$\theta$をすべて求めよ.
2005武蔵工業大過去問
この動画を見る
$z^6+z^3+1=0$を満たす複素数$z$の偏角$\theta$をすべて求めよ.
2005武蔵工業大過去問
一橋大 整数解をもつ三次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k$は整数である.
$x^3-13x+k=0$は$3$つの異なる整数解をもつ.$k$とこれらの整数解をすべて求めよ.
一橋大過去問
この動画を見る
$k$は整数である.
$x^3-13x+k=0$は$3$つの異なる整数解をもつ.$k$とこれらの整数解をすべて求めよ.
一橋大過去問
一橋大 三次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,m$は整数である.$(b \neq 0)$
$f(x)=x^3+8x^2+mx+60$
$f(a+bi)=0$を満たすものが存在するような$m$を求めよ.そのときの解も求めよ.
2007一橋大過去問
この動画を見る
$a,b,m$は整数である.$(b \neq 0)$
$f(x)=x^3+8x^2+mx+60$
$f(a+bi)=0$を満たすものが存在するような$m$を求めよ.そのときの解も求めよ.
2007一橋大過去問
横浜市立大(医)3次方程式の虚数解の絶対値
単元:
#数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$である.
(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.
横浜市立(医)過去問
この動画を見る
$x^3-x^2-x+k=0(k\gt 1)$である.
(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.
横浜市立(医)過去問
上智大 3次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\left[\left(\dfrac{413}{8}\right)^{\frac{1}{2}}+6\right]^{\frac{1}{3}}-\left[\left(\dfrac{413}{8}\right)^{\frac{1}{2}}-6\right]^{\frac{1}{3}}$
$\alpha$を解とする整数係数の3次方程式を1つ与えよ.
上智大過去問
この動画を見る
$\alpha=\left[\left(\dfrac{413}{8}\right)^{\frac{1}{2}}+6\right]^{\frac{1}{3}}-\left[\left(\dfrac{413}{8}\right)^{\frac{1}{2}}-6\right]^{\frac{1}{3}}$
$\alpha$を解とする整数係数の3次方程式を1つ与えよ.
上智大過去問
弘前大(医)3次方程式の解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^3+3nx^2-(3n+2)=0$
(1)すべての自然数$n$において正の解はただ1つであることを示せ.
(2)正の解を$a_n$とする.$\displaystyle \lim_{n\to \infty} a_n$を求めよ.
弘前大(医)過去問
この動画を見る
$n$を自然数とする.
$x^3+3nx^2-(3n+2)=0$
(1)すべての自然数$n$において正の解はただ1つであることを示せ.
(2)正の解を$a_n$とする.$\displaystyle \lim_{n\to \infty} a_n$を求めよ.
弘前大(医)過去問
横浜市立(医)3次方程式の実数解の個数
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+3ax^2+3ax+a^3=0$の実数解の個数を求めよ.
2004横浜市立(医)
この動画を見る
$x^3+3ax^2+3ax+a^3=0$の実数解の個数を求めよ.
2004横浜市立(医)
東邦大(医)三次方程式が自然数解を持つ条件
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a$は正の整数である.
$x^3-20x^2+(100-a)x+8a-23=0$が正の整数解をただ一つもつとする.
$a$の値を求めよ.
2016東邦大(医)過去問
この動画を見る
$a$は正の整数である.
$x^3-20x^2+(100-a)x+8a-23=0$が正の整数解をただ一つもつとする.
$a$の値を求めよ.
2016東邦大(医)過去問
産業医大 2次方程式と3次方程式の共通解
単元:
#数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.
1996産業医大過去問
この動画を見る
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.
1996産業医大過去問
九州大 虚数解を持つ3次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+x^2-x+a=0$は絶対値が1である虚数解をもつ.
実数$a$の値と3つの解を求めよ.
1964九州大(文系)過去問
この動画を見る
$x^3+x^2-x+a=0$は絶対値が1である虚数解をもつ.
実数$a$の値と3つの解を求めよ.
1964九州大(文系)過去問
一橋大 有理数解をもつ3次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m$は整数である.
$x^3+mx^2+(m+8)x+1=0$は有理数解$\alpha$をもつ.
(1)$\alpha$は整数であることを示せ.
(2)$m$を求めよ.
2016一橋大過去問
この動画を見る
$m$は整数である.
$x^3+mx^2+(m+8)x+1=0$は有理数解$\alpha$をもつ.
(1)$\alpha$は整数であることを示せ.
(2)$m$を求めよ.
2016一橋大過去問
慶應義塾大 3次方程式が有理数解をもつ条件
単元:
#数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3x^3-(a+1)x^2-4x+a=0$が整数でない有理数解をもつ自然数$a$の値を求めよ.
慶應義塾大過去問
この動画を見る
$3x^3-(a+1)x^2-4x+a=0$が整数でない有理数解をもつ自然数$a$の値を求めよ.
慶應義塾大過去問