指数関数 - 質問解決D.B.(データベース) - Page 6

指数関数

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)座標平面上で、次の3つの3次関数のグラフについて考える。\\
y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤\\
y=5x^3-x^2+3x+5 \ldots⑥\\
④,⑤,⑥の3次関数のグラフには次の共通点がある。\\
共通点:・y軸との交点のy座標は\boxed{\ \ ソ\ \ } である。\\
・y軸との交点における接線の方程式は y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ } である。\\
\\
a,b,c,dを0でない実数とする。\\
曲線y=ax^3+bx^2+cx+d上の点(0, \boxed{\ \ ツ\ \ })における接線の方程式は\\
y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ } である。\\
次にf(x)=ax^3+bx^2+cx+d, g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }とし、\\
f(x)-g(x)について考える。\\
h(x)=f(x)-g(x)とおく。a,b,c,dが正の実数であるとき、y=h(x)のグラフ\\
の概形は\boxed{\ \ ナ\ \ }である。\\
\\
(※\boxed{\ \ ナ\ \ }の解答群は動画参照)\\
y=f(x)のグラフとy=g(x)のグラフの共有点のx座標は\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }である。\\
また、xが\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }の間を動くとき、\\
|f(x)-g(x)|の値が最大となるのは、x=\frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}のときである。
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

指数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^x-5^y=3375$のとき,$\dfrac{xy}{x+y}$の値を求めよ.
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]二つの関数f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2} について考える。\\
(1)f(0)=\boxed{\ \ セ\ \ }, g(0)=\boxed{\ \ ソ\ \ }\ である。また、f(x)は\\
相加平均と相乗平均の関係から、x=\boxed{\ \ タ\ \ }で最小値\boxed{\ \ チ\ \ }をとる。\\
g(x)=-2となるxの値は\log_2(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ })である。\\
\\
(2)次の①~④は、xにどのような値を代入しても常に成り立つ。\\
f(-x)=\boxed{\ \ ト\ \ } \ldots①  g(-x)=\boxed{\ \ ナ\ \ } \ldots②\\
\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{\ \ ニ\ \ } \ldots③  
g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x) \ldots④\\
\\
\boxed{\ \ ト\ \ }、\boxed{\ \ ナ\ \ }の解答群\\
⓪f(x)    ①-f(x)    ②g(x)    ③-g(x)
\\
\\
(3)花子:①~④は三角関数の性質に似ているね。\\
太郎:三角関数の加法定理に類似した式(\textrm{A})~(\textrm{D})を考えてみたけど、常に\\
成り立つ式はあるだろうか。\\
花子:成り立たない式を見つけるために、式(\textrm{A})~(\textrm{D})の\betaに\\
何か具体的な値を代入して調べてみたら?\\
\\
太郎さんが考えた式\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A}) 
f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C}) 
f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})\\
\\
(1),(2)で示されたことのいくつかを利用すると、式(\textrm{A})~(\textrm{D})のうち、\\
\boxed{\ \ ネ\ \ }以外の3つは成り立たないことが分かる。\boxed{\ \ ネ\ \ }は左辺と右辺を\\
それぞれ計算することによって成り立つことが確かめられる。\\
\\
\boxed{\ \ ネ\ \ }の解答群\\
⓪(\textrm{A})   ①(\textrm{B})   ②(\textrm{C})   ③(\textrm{D})
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

変な指数方程式

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.xは正の実数である.
$x^{x^6}=27$
この動画を見る 

福田のわかった数学〜高校2年生091〜指数対数(4)指数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(4) 指数関数の最大最小\\
最小値とそのときのxを求めよ。\\
(1)y=2^{2+x}+2^{5-x} (2)y=4^x-2^{x+2}\\
(3)y=4^x+4^{-x}-2^x-2^{-x}     
\end{eqnarray}

この動画を見る 

福田のわかった数学〜高校2年生090〜指数対数(3)指数法則を使う計算(3)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(3) 指数法則(3)\\
(1)a^{2x}=5のとき\frac{a^x-a^{-x}}{a^x+a^{-x}}, \frac{a^{3x}-a^{-3x}}{a^{3x}+a^{-3x}}を求めよ。\\
(2)a^{3x}-a^{-3x}=14のときa^x-a^{-x}, a^x+a^{-x}を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生089〜指数対数(2)指数法則を使う計算(2)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(2) 指数法則(2)\\
(1)\sqrt[3]{54}×\sqrt7×\sqrt[4]{14}×\frac{1}{\sqrt[4]{490}}×\sqrt[4]{10}×\frac{1}{\sqrt[4]7}×\frac{1}{\sqrt[12]2}\\
(2)\sqrt[3]{54}+\frac{3}{2}\sqrt[6]4+\sqrt[3]{-\frac{1}{4}}\\
\\
\frac{1}{\sqrt[3]2+1}の分母を有理化せよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生088〜指数対数(1)指数法則を使う計算(1)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 指数対数(1) 指数法則(1)\\
\\
\frac{(x^{\frac{p}{a}}y^{-\frac{b}{q}}z^{\frac{2}{aq}})^{aq}}{(x^{-\frac{a}{p}}y^{\frac{q}{b}})^{bp}}÷\left\{(\sqrt{\frac{x}{y}})^b\sqrt[a]z\right\}^{2a}\\
を計算せよ。
\end{eqnarray}
この動画を見る 

高校範囲だけど、中学生も解ける!!

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^x+10^x = 10^4$のとき
$10^{x-2} = ?$

この動画を見る 

福田のわかった数学〜高校3年生理系101〜大小比較(1)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 大小比較(1)\\
999^{1000}と1000^{999}\\
の大小を比較せよ。
\end{eqnarray}
この動画を見る 

0の0乗ってなに?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
結局0の0乗っていくつになるの?解説動画です
この動画を見る 

大学入試じゃないよ 高校入試だよ  3通りで解説 成城学園

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{56}と5^{24}$はどっちが大きい?


成城学園高等学校
この動画を見る 

指数法則のいい復習になる問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
指数法則のいい復習になる問題紹介動画です
この動画を見る 

福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(13)\hspace{50pt}\\
\\
y=e^{\frac{1}{x^2-1}} (-1 \lt x \lt 1)\\
\\
のグラフを描け。凹凸、漸近線を調べよ。
\end{eqnarray}
この動画を見る 

これ説明して

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
XのX乗…これが続いた時の計算方法紹介動画です
この動画を見る 

小数のマイナス乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$0.2^{-2} =?$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第2問〜集合の要素と包含関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 実数からなる集合A,B,Cを次のように定義する。ただし、a \gt 0\\
A=\left\{x |\ |x| \lt a \right\}\\
B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}\\
C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}\\
\\
(1)A \cap Bが空集合であるための必要十分条件はa \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }である。\\
(2)A \supset Bであるための必要十分条件はa \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }である。\\
\\
\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }の選択肢:(\textrm{a})= (\textrm{b})\lt  (\textrm{c})\leqq  (\textrm{d})\gt  (\textrm{e})\geqq (\textrm{f})≠  \\
\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }の選択肢:(\textrm{a})1 (\textrm{b})2  (\textrm{c})3  (\textrm{d})5  (\textrm{e})7 (\textrm{f})10  \\
(\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7\\
\\
(3)-1 \boxed{\ \ き\ \ }Cであり、5 \boxed{\ \ く\ \ }Cである。\\
\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }の選択肢:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset\\
(4)Cに属する整数は\boxed{\ \ オ\ \ }個ある。\\
(5)A \subset Cとなるaのうち、整数で最大のものは\boxed{\ \ カ\ \ }である。\\
(6)A \supset Cとなるaのうち、整数で最小のものは\boxed{\ \ キ\ \ }である。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

約数 國學院高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
60の正の約数をすべてかけると$60^▢$と表せる

国学院高等学校
この動画を見る 

【数Ⅰ】数と式:指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
(1)$a^2\times a^3$
(2)$(a^2)^3$
(3)$(a^2b)^3$
(4)$(-2ab^2x^3)\times(-3a^2b)^3$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数\\
を順に\alpha,\beta,\gammaとする。3次関数\\
f(x)=(x-\alpha)(x-\beta)(x-\gamma)\\
を考える。\\
(1)関数y=f(x)が極値をとらない確率は\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}である。\\
(2)関数y=f(x)が極大値をとるとき、その極大値の取り得る値のうち最小のもの\\
は\boxed{\ \ ニ\ \ }で、最大のものは\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}である。\\
(3)関数y=f(x)が極大値\boxed{\ \ ニ\ \ }をとる確率は\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}である。\\
(4)関数y=f(x)が極大値\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}を取る確率は\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらの方が大きいか?
$2^{186}$ VS $3^{114}$
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(3)〜指数法則と式の値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 実数aが2^a-2^{-a}=3を満たしているとき、2^a=\boxed{\ \ ウ\ \ }であり、\\
\\
4^a-4^{-a}=\boxed{\ \ エ\ \ }\\
\\
である。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学薬学部過去問
この動画を見る 

結局0の0乗っていくつになるの?

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
0の0乗は何になるか
この動画を見る 

指数・対数・対称式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
43^x=2021 \\
47^y=2021
\end{array}
\right.
\end{eqnarray}$

$\dfrac{5xy+x+y}{4xy-x-y}$の値を求めよ.
この動画を見る 

騙していません!

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^{4^{2^x}}=81^{2^6}$
この動画を見る 

高校1・2年生必見 指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\left(\dfrac{3^{\sqrt5}}{9}\right)^{\sqrt{9+4\sqrt5}}$
この動画を見る 

どっちがでかい?工夫しよう

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$4^9+6^{10}+3^{20}$ VS $5^{12}・2^4$
この動画を見る 

指数タワー 7で割った余りは?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^{5^{5^5}}$を$7$で割った余りを求めよ.
この動画を見る 
PAGE TOP