指数関数 - 質問解決D.B.(データベース) - Page 6

指数関数

簡単すぎた

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 5^x=0.5^y=10000$である.
$\dfrac{1}{x}-\dfrac{1}{y}$はいくつであるか求めよ.
この動画を見る 

大学入試問題#164 防衛医科大学(2020) 指数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$1 \leqq m,n$実数
$m^{\frac{n}{3}}+m^{-\frac{n}{3}}=\displaystyle \frac{3\sqrt{ 2 }}{2}$のとき
$mm^n-m^{-n}$の値を求めよ。

出典:2020年防衛医科大学 入試問題
この動画を見る 

指数の計算 log使わずに解ける

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^x=3^y$のとき
$4^{\frac{x}{y}} =?$
この動画を見る 

解けるように作られた問題 ガウス少年なら一瞬

アイキャッチ画像
単元: #指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=\dfrac{25^x}{25^x+5}$である.
$ f \left(\dfrac{1}{100}\right)+f \left(\dfrac{2}{100}\right)+
・・・・・・+f \left(\dfrac{98}{100}\right)+\left(\dfrac{99}{100}\right)$の値を求めよ.
この動画を見る 

解けるように作られた方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解$(x,y)$を求めよ.
$ 16^{x^2+y}+16^{x+y^2}=1$
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、実数xの関数$f(x)=(x^2+3x+a)(x+1)^2$を考える。
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。
(2)$a \lt 2$のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる
xの値を$\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)$とする。
$f(\alpha_1) \lt f(\alpha_2)$を示せ。
(3)f(x)が$x \lt \beta$において単調減少し、かつ、$x=\beta$において最小値をとるとする。
このとき、aのとりうる値の範囲を求めよ。

2022東北大学理系過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$y=x^3-x$により定まる座標平面上の曲線をCとする。
C上の点P$(\alpha,\alpha^3-\alpha)$を通り、
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。
(1)$\alpha$のとりうる値の範囲を求めよ。
(2)Cとlの点P以外の2つの交点のx座標を$\beta,\gamma$とする。ただし$\beta \lt \gamma$とする。
$\beta^2+\beta\gamma+\gamma^2-1\neq 0$ となることを示せ。
(3)(2)の$\beta,\gamma$を用いて、
$u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}$
と定める。このとき、uの取りうる値の範囲を求めよ。

2022東京大学文系過去問
この動画を見る 

指数の計算 敬愛学園  令和4年度 2022 入試問題100題解説92問目!

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{13}+2^{13}+2^{14}+2^{15}=2^▢$

2022敬愛学園
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の曲線
$C:y=x^3-x$
を考える。
(1)座標平面上の全ての点Pが次の条件$(\textrm{i})$を満たすことを示せ。
$(\textrm{i})$点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。
(2)次の条件$(\textrm{ii})$を満たす点Pのとりうる範囲を座標平面上に図示せよ。
$(\textrm{ii})$点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。

2022東京大学理系過去問
この動画を見る 

読める?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{3^{4}}$何と読む?
①2の3の4乗
②2の3乗の4乗
③2の3の4乗乗
④234
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)座標平面上で、次の3つの3次関数のグラフについて考える。$y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤$
$y=5x^3-x^2+3x+5 \ldots⑥$
④,⑤,⑥の3次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ソ}$である。
・y軸との交点における接線の方程式は $y=\boxed{タ}\ x+\boxed{チ}$ である。

$a,b,c,d$を0でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$(0, \boxed{ツ})$における接線の方程式は
$y=\boxed{テ}\ x+\boxed{ト}$ である。
次に$f(x)=ax^3+bx^2+cx+d, g(x)=\boxed{テ}\ x+\boxed{ト}$とし、
$f(x)-g(x)$について考える。
$h(x)=f(x)-g(x)$とおく。a,b,c,dが正の実数であるとき、$y=h(x)$のグラフ
の概形は$\boxed{ナ}$である。

(※$\boxed{ナ}$の解答群は動画参照)
$y=f(x)$のグラフと$y=g(x)$のグラフの共有点のx座標は$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$である。
また、xが$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\frac{\boxed{ハヒフ}}{\boxed{ヘホ}}$のときである。

2021共通テスト数学過去問
この動画を見る 

指数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^x-5^y=3375$のとき,$\dfrac{xy}{x+y}$の値を求めよ.
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]二つの関数$f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2}$について考える。
(1)$f(0)=\boxed{セ}, g(0)=\boxed{ソ}$である。また、$f(x)$は
相加平均と相乗平均の関係から、$x=\boxed{タ}$で最小値$\boxed{チ}$をとる。
$g(x)=-2$となるxの値は$\log_2(\sqrt{\boxed{ツ}}-\boxed{テ})$である。

(2)次の①~④は、xにどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{ト} \ldots①  g(-x)=\boxed{ナ} \ldots②$
$\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{ニ} \ldots③$  
$g(2x)=\boxed{ヌ}\ f(x)g(x) \ldots④$

$\boxed{ト}、\boxed{ナ}$の解答群
⓪$f(x)$    ①$-f(x)$    ②$g(x)$    ③$-g(x)$

(3)花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式$(\textrm{A})~(\textrm{D})$を考えてみたけど、常に
成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式$(\textrm{A})~(\textrm{D})$の$\beta$に
何か具体的な値を代入して調べてみたら?

太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})$
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})$

(1),(2)で示されたことのいくつかを利用すると、式$(\textrm{A})~(\textrm{D})$のうち、
$\boxed{ネ}$以外の3つは成り立たないことが分かる。$\boxed{ネ}$は左辺と右辺を
それぞれ計算することによって成り立つことが確かめられる。

$\boxed{ネ}$の解答群
⓪$(\textrm{A})$   ①$(\textrm{B})$   ②$(\textrm{C})$   ③$(\textrm{D})$

2021共通テスト数学過去問
この動画を見る 

変な指数方程式

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.xは正の実数である.
$x^{x^6}=27$
この動画を見る 

福田のわかった数学〜高校2年生091〜指数対数(4)指数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(4) 指数関数の最大最小
最小値とそのときのxを求めよ。
(1)$y=2^{2+x}+2^{5-x}$ (2)$y=4^x-2^{x+2}$
(3)$y=4^x+4^{-x}-2^x-2^{-x}$     
この動画を見る 

福田のわかった数学〜高校2年生090〜指数対数(3)指数法則を使う計算(3)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(3) 指数法則(3)
(1)$a^{2x}=5$のとき$\frac{a^x-a^{-x}}{a^x+a^{-x}}, \frac{a^{3x}-a^{-3x}}{a^{3x}+a^{-3x}}$を求めよ。
(2)$a^{3x}-a^{-3x}=14$のとき$a^x-a^{-x}, a^x+a^{-x}$を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生089〜指数対数(2)指数法則を使う計算(2)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(2) 指数法則(2)
(1)$\sqrt[3]{54}×\sqrt7×\sqrt[4]{14}×\frac{1}{\sqrt[4]{490}}×\sqrt[4]{10}×\frac{1}{\sqrt[4]7}×\frac{1}{\sqrt[12]2}$
(2)$\sqrt[3]{54}+\frac{3}{2}\sqrt[6]4+\sqrt[3]{-\frac{1}{4}}$

$\frac{1}{\sqrt[3]2+1}$の分母を有理化せよ。
この動画を見る 

福田のわかった数学〜高校2年生088〜指数対数(1)指数法則を使う計算(1)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(1) 指数法則(1)
$\frac{(x^{\frac{p}{a}}y^{-\frac{b}{q}}z^{\frac{2}{aq}})^{aq}}{(x^{-\frac{a}{p}}y^{\frac{q}{b}})^{bp}}÷\left\{(\sqrt{\frac{x}{y}})^b\sqrt[a]z\right\}^{2a}$
を計算せよ。
この動画を見る 

高校範囲だけど、中学生も解ける!!

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^x+10^x = 10^4$のとき
$10^{x-2} = ?$

この動画を見る 

福田のわかった数学〜高校3年生理系101〜大小比較(1)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$textrm{III}$大小比較(1)$999^{1000}$と$1000^{999}$
の大小を比較せよ。
この動画を見る 

0の0乗ってなに?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
結局0の0乗っていくつになるの?解説動画です
この動画を見る 

大学入試じゃないよ 高校入試だよ  3通りで解説 成城学園

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{56}と5^{24}$はどっちが大きい?


成城学園高等学校
この動画を見る 

指数法則のいい復習になる問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
指数法則のいい復習になる問題紹介動画です
この動画を見る 

福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(13)

$y=e^{\frac{1}{x^2-1}} (-1 \lt x \lt 1)$
のグラフを描け。凹凸、漸近線を調べよ。
この動画を見る 

これ説明して

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
XのX乗…これが続いた時の計算方法紹介動画です
この動画を見る 

小数のマイナス乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$0.2^{-2} =?$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第2問〜集合の要素と包含関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$実数からなる集合A,B,Cを次のように定義する。ただし、$a \gt 0$
$A=\left\{x |\ |x| \lt a \right\}$
$B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}$
$C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}$

(1)$A \cap B$が空集合であるための必要十分条件は$a \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }$である。
(2)$A \supset B$であるための必要十分条件は$a \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }$である。

$\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }$の選択肢$:(\textrm{a})= (\textrm{b})\lt  (\textrm{c})\leqq  (\textrm{d})\gt  (\textrm{e})\geqq (\textrm{f})\neq$
$\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }$の選択肢$:(\textrm{a})1 (\textrm{b})2  (\textrm{c})3  (\textrm{d})5  (\textrm{e})7 (\textrm{f})10$
($\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7$

(3)$-1 \boxed{\ \ き\ \ }C$であり、$5 \boxed{\ \ く\ \ }C$である。
$\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }$の選択肢$:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset$
(4)Cに属する整数は$\boxed{\ \ オ\ \ }$個ある。
(5)$A \subset C$となるaのうち、整数で最大のものは$\boxed{\ \ カ\ \ }$である。
(6)$A \supset C$となるaのうち、整数で最小のものは$\boxed{\ \ キ\ \ }$である。

2021上智大学理系過去問
この動画を見る 

約数 國學院高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
60の正の約数をすべてかけると$60^▢$と表せる

国学院高等学校
この動画を見る 

【数Ⅰ】数と式:指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の計算をしよう。
(1)$a^2\times a^3$
(2)$(a^2)^3$
(3)$(a^2b)^3$
(4)$(-2ab^2x^3)\times(-3a^2b)^3$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数
を順に$\alpha,\beta,\gamma$とする。3次関数
$f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
を考える。
(1)関数$y=f(x)$が極値をとらない確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(2)関数$y=f(x)$が極大値をとるとき、その極大値の取り得る値のうち最小のもの
は$\boxed{\ \ ニ\ \ }$で、最大のものは$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$である。
(3)関数$y=f(x)$が極大値$\boxed{\ \ ニ\ \ }$をとる確率は$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。
(4)関数$y=f(x)$が極大値$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$を取る確率は$\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}$である。

2021上智大学文系過去問
この動画を見る 
PAGE TOP