接線と増減表・最大値・最小値

鳴門教育大 2直線のなす角

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3$上の異なる2点$(a,a^3),(b,b^3)$における接線のなす角が$60^{ \circ }$である。
$a$と$b$の関係を式で表せ
出典:鳴門教育大学 過去問
この動画を見る
$y=x^3$上の異なる2点$(a,a^3),(b,b^3)$における接線のなす角が$60^{ \circ }$である。
$a$と$b$の関係を式で表せ
出典:鳴門教育大学 過去問
青山学院大 4次関数の接線 積分公式

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-3x^2-2x-4$と$y=ax+b$が異なる2点で接している
(1)
$a,b$の値を求めよ
(2)
$f(x)$と$y=ax+b$で囲まれる面積を求めよ
出典:1994年青山学院大学 過去問
この動画を見る
$f(x)=x^4+2x^3-3x^2-2x-4$と$y=ax+b$が異なる2点で接している
(1)
$a,b$の値を求めよ
(2)
$f(x)$と$y=ax+b$で囲まれる面積を求めよ
出典:1994年青山学院大学 過去問
青山学院大 関数の最大値・最小値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x,y)$が次の式を満たすとき
$x^2+y^2-4x-4y+3=0$
$x+2y$の最大値と最小値を求めよ
出典:2003年青山学院大学 過去問
この動画を見る
$(x,y)$が次の式を満たすとき
$x^2+y^2-4x-4y+3=0$
$x+2y$の最大値と最小値を求めよ
出典:2003年青山学院大学 過去問
一橋大 三次関数と接線

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2$
$g(x)=x^3+3x^2+c(c \geqq 0)$
$f(x)$上の点$P(p,f(p))$における接線$l$が$g(x)$と点$Q(q,g(q))$で接し、点$R$で$f(x)$と交わる。
(1)
$c$を$p$で表せ
(2)
$PQ:QR$
出典:2000年一橋大学 過去問
この動画を見る
$f(x)=x^3+3x^2$
$g(x)=x^3+3x^2+c(c \geqq 0)$
$f(x)$上の点$P(p,f(p))$における接線$l$が$g(x)$と点$Q(q,g(q))$で接し、点$R$で$f(x)$と交わる。
(1)
$c$を$p$で表せ
(2)
$PQ:QR$
出典:2000年一橋大学 過去問
熊本大 対数関数の最大値

単元:
#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$
$f(x)=log_2x+log_2(6-x)^2$
出典:熊本大学 過去問
この動画を見る
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$
$f(x)=log_2x+log_2(6-x)^2$
出典:熊本大学 過去問
東京電機大 4次関数と直線の共有点

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#東京電機大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^3+x$と$(1,0)$を通り傾き$k$の直線との共有点の個数を求めよ
出典:2017年東京電機大学 過去問
この動画を見る
$f(x)=x^4-2x^3+x$と$(1,0)$を通り傾き$k$の直線との共有点の個数を求めよ
出典:2017年東京電機大学 過去問
大阪市立(医)微分 接線と交点

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?
出典:大阪市立大学 医学部医学科 過去問
この動画を見る
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?
出典:大阪市立大学 医学部医学科 過去問
北里大 三次関数 最大値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#北里大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$
$f(x)=2x^3-3(a+1)x^2+6ax+1$
$0 \leqq x \leqq 2$において$f(x)$が$x=2$で最大値を取る
$a$の条件を求めよ
出典:北里大学 過去問
この動画を見る
$a \gt 0,a \neq 1$
$f(x)=2x^3-3(a+1)x^2+6ax+1$
$0 \leqq x \leqq 2$において$f(x)$が$x=2$で最大値を取る
$a$の条件を求めよ
出典:北里大学 過去問
名古屋市立(医) 関数 微分

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$C_{a}:y=x(x-a)(x-2a)^2$
(1)
$(1,-1)$を通る$C_{a}$がただ1つであることを示せ
(2)
$(p,q)$を通る$C_{a}$がただ1つであるような$(p,q)$の範囲を図示せよ。
ただし$p \gt 0$
出典:1995年名古屋市立大学 医学部 過去問
この動画を見る
$a \gt 0$
$C_{a}:y=x(x-a)(x-2a)^2$
(1)
$(1,-1)$を通る$C_{a}$がただ1つであることを示せ
(2)
$(p,q)$を通る$C_{a}$がただ1つであるような$(p,q)$の範囲を図示せよ。
ただし$p \gt 0$
出典:1995年名古屋市立大学 医学部 過去問
大阪大 3次関数

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
この動画を見る
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
【数Ⅱ】微分法と積分法:x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。
この動画を見る
x=1で極大値6をとり、x=2で極小値5をとる3次関数f(x)を求めよ。
一橋大 三次関数と接点 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3-ax$と、$(0,2b^3)$を通る直線はちょうど2点$P,Q$を共有している。
($P$は$Q$より左)
(1)
直線$PQ$の式($a,b$を用いて)
(2)
$P,Q$の座標($a,b$を用いて)
(3)
$\angle POQ=90^{ \circ }$となる$b$が存在するような$a$の範囲
出典:一橋大学 過去問
この動画を見る
$y=x^3-ax$と、$(0,2b^3)$を通る直線はちょうど2点$P,Q$を共有している。
($P$は$Q$より左)
(1)
直線$PQ$の式($a,b$を用いて)
(2)
$P,Q$の座標($a,b$を用いて)
(3)
$\angle POQ=90^{ \circ }$となる$b$が存在するような$a$の範囲
出典:一橋大学 過去問
京都大 放物線と線分の長さ Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
この動画を見る
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
島根大 4次関数 接線 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=m(x-1)$と$y=(x-1)(x+a)(x-a)^2$が接するときの$m$の値。
ただし、$a$は$0 \lt a \lt 1$の定数
出典:島根大学 過去問
この動画を見る
$y=m(x-1)$と$y=(x-1)(x+a)(x-a)^2$が接するときの$m$の値。
ただし、$a$は$0 \lt a \lt 1$の定数
出典:島根大学 過去問
【高校数学】微分5.5~例題・微分を用いた最大最小・基礎~ 6-12【数学Ⅱ】

単元:
#微分法と積分法#接線と増減表・最大値・最小値
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) y=-2x³+6x²-8(-2<x≦1)の最大値・最小値を求めよ。
(2)1辺が12cmの正方形の厚紙の四隅から、合同な正方形を切り取った残りで、
ふたのない長方形の箱を作る。
箱の容積を最大にするには、切り取る正方形の1辺を何cmにすればよいか。
この動画を見る
(1) y=-2x³+6x²-8(-2<x≦1)の最大値・最小値を求めよ。
(2)1辺が12cmの正方形の厚紙の四隅から、合同な正方形を切り取った残りで、
ふたのない長方形の箱を作る。
箱の容積を最大にするには、切り取る正方形の1辺を何cmにすればよいか。
新潟大(医)3次関数・接線・面積 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#新潟大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C:y=2x^3-12x$
$l:(1,-2)$を通る$C$の接線
(1)
$l$の方程式
(2)
$C$と$l$とで囲まれた面積
出典:2006年新潟大学医学部 過去問
この動画を見る
$C:y=2x^3-12x$
$l:(1,-2)$を通る$C$の接線
(1)
$l$の方程式
(2)
$C$と$l$とで囲まれた面積
出典:2006年新潟大学医学部 過去問
【高校数学】微分⑤~微分を用いた最大値・最小値~ 6-11【数学Ⅱ】

単元:
#微分法と積分法#接線と増減表・最大値・最小値
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
y=- 2x³+3x²+12x(-2≦x≦4)の最大値と最小値を求めよ。
この動画を見る
y=- 2x³+3x²+12x(-2≦x≦4)の最大値と最小値を求めよ。
福井県立大 3次方程式が相違三実根を持つ条件 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#福井県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2x^3-3(a+3)x^2+18ax-6a^2=0$が3つの異なる実数解をもつ$a$の範囲は?
出典:福井県立大学 過去問
この動画を見る
$2x^3-3(a+3)x^2+18ax-6a^2=0$が3つの異なる実数解をもつ$a$の範囲は?
出典:福井県立大学 過去問
一橋大 4次関数と接線・共有点 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+x^3+ax^2$と直線$l$との共有点は2個で、$l$はそのうちの一方のみで$f(x)$に接している。
このような直線が存在する$a$の範囲は?
出典:1996年一橋大学 過去問
この動画を見る
$f(x)=x^4+x^3+ax^2$と直線$l$との共有点は2個で、$l$はそのうちの一方のみで$f(x)$に接している。
このような直線が存在する$a$の範囲は?
出典:1996年一橋大学 過去問
信州大 三角関数・微分 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?
出典:2004年国立大学法人信州大学 過去問
この動画を見る
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?
出典:2004年国立大学法人信州大学 過去問
東工大 秀才栗崎 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?
出典:1992年東京工業大学 過去問
この動画を見る
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?
出典:1992年東京工業大学 過去問
【高校数学】微分4.5~例題・増減表と極値・応用~ 6-10【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)関数$y=x^4-2x^2$の極値を求め、そのグラフをかけ。
(2)関数$f(x)=x^3+ax^2+bx^2-2$が$x=-1$で極大値をとり、$x=3$で極小値を
とるように、定数$a,b$の値を定めよ。また、極値を求めよ。
(3)関数$f(x)=x^3-3x^2+ax$が$x=1$で極値をとるように定数$a$の値を定めよ
この動画を見る
(1)関数$y=x^4-2x^2$の極値を求め、そのグラフをかけ。
(2)関数$f(x)=x^3+ax^2+bx^2-2$が$x=-1$で極大値をとり、$x=3$で極小値を
とるように、定数$a,b$の値を定めよ。また、極値を求めよ。
(3)関数$f(x)=x^3-3x^2+ax$が$x=1$で極値をとるように定数$a$の値を定めよ
【高校数学】微分4.5~例題・増減表と極値・基礎~ 6-9【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)関数y=2x³+3x²の増減を調べ、極値を求めよ。またグラフをかけ。
(2)関数f(x)=x³について、極値を求めよ。
(3)関数y=2−x³のグラフをかけ。
この動画を見る
(1)関数y=2x³+3x²の増減を調べ、極値を求めよ。またグラフをかけ。
(2)関数f(x)=x³について、極値を求めよ。
(3)関数y=2−x³のグラフをかけ。
【高校数学】微分④~増減表と極値~ 6-8【数学Ⅱ】

【高校数学】微分3.5~例題・接線の求め方・基礎~ 6-7【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)曲線y=-x²+2x+4上の点(-1,1)における接線の方程式を求めよ。
(2)曲線y=x²+4に点(1,1)から引いた接線の方程式と、接点の座標を求めよ。
この動画を見る
(1)曲線y=-x²+2x+4上の点(-1,1)における接線の方程式を求めよ。
(2)曲線y=x²+4に点(1,1)から引いた接線の方程式と、接点の座標を求めよ。
長崎大 微分・積分 接線 面積 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^4+8x^3-18x^2+11$
(1)
グラフの概形
(2)
$f(x)$と異なる2点で接する直線の方程式
(3)
(2)の直線と$f(x)$とで囲まれた面積
出典:2009年長崎大学 過去問
この動画を見る
$f(x)=-x^4+8x^3-18x^2+11$
(1)
グラフの概形
(2)
$f(x)$と異なる2点で接する直線の方程式
(3)
(2)の直線と$f(x)$とで囲まれた面積
出典:2009年長崎大学 過去問
【高校数学】微分③~接線の方程式~ 6-6【数学Ⅱ】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
微分 接線の方程式についての説明動画です
この動画を見る
微分 接線の方程式についての説明動画です
山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
05年 山口大学
次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る
05年 山口大学
次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
佐賀大 三次関数 最大値・最小値 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
09年 佐賀大学
$0\lt p\lt1$の範囲のとき、$f(x)=x^3-(3p+2)x^2+8px$の $0\leqq x\leqq1$における最大値、最小値を求めよ
この動画を見る
09年 佐賀大学
$0\lt p\lt1$の範囲のとき、$f(x)=x^3-(3p+2)x^2+8px$の $0\leqq x\leqq1$における最大値、最小値を求めよ
和歌山大 4次関数と接線 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#岡山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。
(1)$f(x)$と$y=mx$で囲まれる面積を求めよ
(2)$m$の値と極大値を求めよ
この動画を見る
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。
(1)$f(x)$と$y=mx$で囲まれる面積を求めよ
(2)$m$の値と極大値を求めよ