数Ⅱ
数Ⅱ
【数Ⅱ】【微分法と積分法】3次関数と接線で囲まれた図形の面積 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=x³-5x²+5x+8と、その曲線上の点(3,5)のおける接線で囲まれた図形の面積Sを求めよ。
この動画を見る
曲線y=x³-5x²+5x+8と、その曲線上の点(3,5)のおける接線で囲まれた図形の面積Sを求めよ。
【数Ⅱ】【微分法と積分法】軌跡と面積 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
1辺の長さが1の正方形OABCがある。点Pを正方形OABCの周および内部を動く点とし、点Pから辺OAに下した垂線をPHとする。点PがCP=PHを満たしながら動くとき、点Pの描く曲線と辺OA,AB,COで囲まれた部分の図形の面積を求めよ。
この動画を見る
1辺の長さが1の正方形OABCがある。点Pを正方形OABCの周および内部を動く点とし、点Pから辺OAに下した垂線をPHとする。点PがCP=PHを満たしながら動くとき、点Pの描く曲線と辺OA,AB,COで囲まれた部分の図形の面積を求めよ。
【数Ⅱ】【微分法と積分法】面積の最小値 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
この動画を見る
福田のおもしろ数学456〜5変数の連立方程式

単元:
#連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
実数$x,y,z,w,t$に対して次の連立方程式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\hspace{ 2pt } x^5=y+y^5= \cdots ① \\
\hspace{ 2pt }y^5=z+z^5=\cdots ② \\\
\hspace{ 0.1pt }z^5=w+w^5=\cdots ③ \\\
\hspace{ 0.2pt }w^5=t+t^5=\cdots ④ \\\
\hspace{ 1pt }t^5=x+x^5= \cdots ⑤
\end{array}
\right.
\end{eqnarray}$
この動画を見る
実数$x,y,z,w,t$に対して次の連立方程式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\hspace{ 2pt } x^5=y+y^5= \cdots ① \\
\hspace{ 2pt }y^5=z+z^5=\cdots ② \\\
\hspace{ 0.1pt }z^5=w+w^5=\cdots ③ \\\
\hspace{ 0.2pt }w^5=t+t^5=\cdots ④ \\\
\hspace{ 1pt }t^5=x+x^5= \cdots ⑤
\end{array}
\right.
\end{eqnarray}$
福田の数学〜東北大学2025理系第4問〜2曲線の相接と面積の極限

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$n$を正の整数、$a$を正の実数とし、
関数$f(x)$と$g(x)$を次のように定める。
$f(x)=n\log x,\quad g(x)=ax^n$
また、曲線$y=f(x)$と曲線$y=g(x)$が共有点をもち、
その共有点における
$2$つの曲線の接線が一致しているとする。
このとき、以下の問いに答えよ。
(1)$a$の値を求めよ。
(2)この$2$つの曲線と$x$軸で囲まれた部分の面積
$S_n$を求めよ。
(3)$\quad $(2)で求めた$S_n$に対し、極限$\displaystyle \lim_{n\to\infty}S_n$を求めよ。
$2025$年東北大学理系過去問題
この動画を見る
$\boxed{4}$
$n$を正の整数、$a$を正の実数とし、
関数$f(x)$と$g(x)$を次のように定める。
$f(x)=n\log x,\quad g(x)=ax^n$
また、曲線$y=f(x)$と曲線$y=g(x)$が共有点をもち、
その共有点における
$2$つの曲線の接線が一致しているとする。
このとき、以下の問いに答えよ。
(1)$a$の値を求めよ。
(2)この$2$つの曲線と$x$軸で囲まれた部分の面積
$S_n$を求めよ。
(3)$\quad $(2)で求めた$S_n$に対し、極限$\displaystyle \lim_{n\to\infty}S_n$を求めよ。
$2025$年東北大学理系過去問題
福田のおもしろ数学455〜二重のシグマがかかった不等式の証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
任意の実数$a_1,a_2,\cdots a_n$に対して
$\displaystyle \sum_{j=1}^n \left(\displaystyle \sum_{i=1}^n \dfrac{a_ia_j}{i+j-1}\right)\geqq 0$
を証明して下さい。
この動画を見る
任意の実数$a_1,a_2,\cdots a_n$に対して
$\displaystyle \sum_{j=1}^n \left(\displaystyle \sum_{i=1}^n \dfrac{a_ia_j}{i+j-1}\right)\geqq 0$
を証明して下さい。
【数Ⅱ】【微分法と積分法】面積から直線を求める ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
原点を通る直線と、曲線y=x²-2xで囲まれた図形の面積が$\frac{32}{3}$である。この直線の方程式を求めよ。
この動画を見る
原点を通る直線と、曲線y=x²-2xで囲まれた図形の面積が$\frac{32}{3}$である。この直線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】面積の2等分 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線y=2+x-x²とx軸で囲まれた図形の面積を、点(2,0)を通る直線lが2等分するとき、lの傾きを求めよ。
この動画を見る
放物線y=2+x-x²とx軸で囲まれた図形の面積を、点(2,0)を通る直線lが2等分するとき、lの傾きを求めよ。
【数Ⅱ】【微分法と積分法】面積が一定になることを示す ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線y=x²+4上の点Pにおける放物線の接線と放物線y=x²で囲まれた図形の面積は、点Pの選び方に関係なく一定であることを示せ。
この動画を見る
放物線y=x²+4上の点Pにおける放物線の接線と放物線y=x²で囲まれた図形の面積は、点Pの選び方に関係なく一定であることを示せ。
福田のおもしろ数学454〜積分に関するシュワルツの不等式の証明と等号成立条件

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$p\leqq x \leqq q$で定義された連続関数$f(x),g(x)$に対して
$\left(\displaystyle \int_{p}^{q} f(x)^2 dx\right)\left(\displaystyle \int_{p}^{q}g(x)^2 dx \right) \geqq \left(\displaystyle \int_{p}^{q} f(x)g(x)dx\right)^2$
を証明して下さい。
また等号成立条件も調べて下さい。
この動画を見る
$p\leqq x \leqq q$で定義された連続関数$f(x),g(x)$に対して
$\left(\displaystyle \int_{p}^{q} f(x)^2 dx\right)\left(\displaystyle \int_{p}^{q}g(x)^2 dx \right) \geqq \left(\displaystyle \int_{p}^{q} f(x)g(x)dx\right)^2$
を証明して下さい。
また等号成立条件も調べて下さい。
【数Ⅱ】【微分法と積分法】定積分の不等式の証明 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
不等式
$\left( \int_{0}^{1} (x-a)(x-b) \,dx \right)^2 \leq \int_{0}^{1} (x-a)^2 \,dx \int_{0}^{1} (x-b)^2 \,dx$
を証明せよ。また、等号が成り立つのはどのような場合か。
ただし、$a, b$ は定数とする。
この動画を見る
不等式
$\left( \int_{0}^{1} (x-a)(x-b) \,dx \right)^2 \leq \int_{0}^{1} (x-a)^2 \,dx \int_{0}^{1} (x-b)^2 \,dx$
を証明せよ。また、等号が成り立つのはどのような場合か。
ただし、$a, b$ は定数とする。
【数Ⅱ】【微分法と積分法】定積分で表された関数3 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$0 \leq x \leq 4$ のとき、
関数 $f(x) = \int_{0}^{x} (t-1)(t-3) \,dt$
の最大値、最小値を求めよ。
この動画を見る
$0 \leq x \leq 4$ のとき、
関数 $f(x) = \int_{0}^{x} (t-1)(t-3) \,dt$
の最大値、最小値を求めよ。
【数Ⅱ】【微分法と積分法】定積分で表された関数2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 $f(x) = \int_{-3}^{x} (t^2 - 1) \,dt$
のグラフをかけ。
この動画を見る
関数 $f(x) = \int_{-3}^{x} (t^2 - 1) \,dt$
のグラフをかけ。
【数Ⅱ】【微分法と積分法】定積分で表された関数1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数 $f(x) = \int_{-1}^{x} (3t^2 - 4t + 1) \,dt$
が極値をとるときの $x$ の値を求めよ。
この動画を見る
関数 $f(x) = \int_{-1}^{x} (3t^2 - 4t + 1) \,dt$
が極値をとるときの $x$ の値を求めよ。
福田のおもしろ数学450〜2円の共有点の軌跡

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$2$円$C_1 : x^2+y^2=4a^2$
$C_2:(x-3)^2:y^2+a^2 \quad (a\gt 0)$
の共有点の軌跡を求めよ。
この動画を見る
$2$円$C_1 : x^2+y^2=4a^2$
$C_2:(x-3)^2:y^2+a^2 \quad (a\gt 0)$
の共有点の軌跡を求めよ。
福田の数学〜北海道大学2025理系第3問〜部分積分と極限

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
実数$a$および自然数$n$に対して、定積分
$I(a,n)=\displaystyle \int_{0}^{2\pi} e^{ax} \sin (nx) dx$
を考える。ここで$e$は自然対数の底である。
(1)$I(a,n)$を求めよ。
(2)$a_n=\dfrac{\log _n}{2\pi} (n=1,2,3,\cdots)$のとき、
極限$\displaystyle \lim_{n\to\infty} I(a_n,n)$を求めよ。
ただし、$\log_n$は$n$の自然対数である。
また、必要ならば$\displaystyle \lim_{n\to\infty}\dfrac{\log_n}{n}=0$である
ことを用いてもよい。
$2025$年北海道大学理系過去問題
この動画を見る
$\boxed{3}$
実数$a$および自然数$n$に対して、定積分
$I(a,n)=\displaystyle \int_{0}^{2\pi} e^{ax} \sin (nx) dx$
を考える。ここで$e$は自然対数の底である。
(1)$I(a,n)$を求めよ。
(2)$a_n=\dfrac{\log _n}{2\pi} (n=1,2,3,\cdots)$のとき、
極限$\displaystyle \lim_{n\to\infty} I(a_n,n)$を求めよ。
ただし、$\log_n$は$n$の自然対数である。
また、必要ならば$\displaystyle \lim_{n\to\infty}\dfrac{\log_n}{n}=0$である
ことを用いてもよい。
$2025$年北海道大学理系過去問題
福田のおもしろ数学446〜分数式の値が整数となるnをすべて求める

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\dfrac{n}{1!}+\dfrac{n^2}{2!}+\dfrac{n^3}{3!}+\cdots +\dfrac{n^{n-1}}{(n-1)!}+\dfrac{n^n}{n!}$
が整数になるような
正の整数$n$をすべて求めて下さい。
この動画を見る
$\dfrac{n}{1!}+\dfrac{n^2}{2!}+\dfrac{n^3}{3!}+\cdots +\dfrac{n^{n-1}}{(n-1)!}+\dfrac{n^n}{n!}$
が整数になるような
正の整数$n$をすべて求めて下さい。
福田の数学〜北海道大学2025理系第4問〜複素数平面上の点の軌跡と2円が共有点をもつ条件

単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$a$を正の実数とする。
(1)$a$が$1$でないとき、複素数$z$についての方程式
$a \vert z-1 \vert = \vert (a-2)z +a \vert$
を考える。
この方程式を満たす$z$全体の集合を
複素数平面上に図示せよ。
$2025$年北海道大学理系過去問題
この動画を見る
$\boxed{4}$
$a$を正の実数とする。
(1)$a$が$1$でないとき、複素数$z$についての方程式
$a \vert z-1 \vert = \vert (a-2)z +a \vert$
を考える。
この方程式を満たす$z$全体の集合を
複素数平面上に図示せよ。
$2025$年北海道大学理系過去問題
【数Ⅱ】【微分法と積分法】積分を含む関数3 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(x) + \int_{0}^{x} g(t) \,dt = 3x^2 + 2x + 1$,
$\frac{d}{dx} f(x) = g(x) + 4x^2$
を満たす関数 $f(x)$, $g(x)$ を求めよ
この動画を見る
$f(x) + \int_{0}^{x} g(t) \,dt = 3x^2 + 2x + 1$,
$\frac{d}{dx} f(x) = g(x) + 4x^2$
を満たす関数 $f(x)$, $g(x)$ を求めよ
【数Ⅱ】【微分法と積分法】積分を含む関数2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(0) = 0$, $f(1) = 1$ を満たす 2 次関数 $f(x)$ のうちで、
$\int_{0}^{1} (f(x))^2 \,dx$ を最小にするものを求めよ。
この動画を見る
$f(0) = 0$, $f(1) = 1$ を満たす 2 次関数 $f(x)$ のうちで、
$\int_{0}^{1} (f(x))^2 \,dx$ を最小にするものを求めよ。
【数Ⅱ】【微分法と積分法】積分を含む関数1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(a) = \int_{0}^{1} (2ax^2 - a^2x) \,dx$ を $a$ の式で表せ。
また、$f(a)$ の最大値を求めよ。
この動画を見る
$f(a) = \int_{0}^{1} (2ax^2 - a^2x) \,dx$ を $a$ の式で表せ。
また、$f(a)$ の最大値を求めよ。
【数Ⅱ】【微分法と積分法】積分方程式 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数 $f(x)$ を求めよ。
(1) $f(x)$ = $x$ + $\int_{0}^{3}$ $f(t)$ $dt$
(2) $f(x)$ = $\int_{1}^{3}$ {${2x - f(t)}$}$dt$
(3) $f(x)$ = $x^2$ - $\int_{0}^{2}$ $x$ $f(t)$ $dt$ + $2$$\int_{0}^{1}$ $f(t)$$dt$
(4) $f(x)$ = $1$ + $\int_{0}^{1} $$(x - t)$ $f(t)$$dt$
この動画を見る
次の等式を満たす関数 $f(x)$ を求めよ。
(1) $f(x)$ = $x$ + $\int_{0}^{3}$ $f(t)$ $dt$
(2) $f(x)$ = $\int_{1}^{3}$ {${2x - f(t)}$}$dt$
(3) $f(x)$ = $x^2$ - $\int_{0}^{2}$ $x$ $f(t)$ $dt$ + $2$$\int_{0}^{1}$ $f(t)$$dt$
(4) $f(x)$ = $1$ + $\int_{0}^{1} $$(x - t)$ $f(t)$$dt$
福田の数学〜北海道大学2025理系第1問〜指数対数の基本性質と数列

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
$\alpha,r$を$\alpha \gt 1,r \gt 1$を満たす実数とする。
数列$\{a_n\}$を$a_1=\alpha$で公比が$r$の等比数列とする。
数列$\{b_n\}$を
$b_n=\log_{a_{n}} (a_{n+1}) (n=1,2,3,\cdots)$で定める。
(1)$b_n$を$n$と$\log_{\alpha}r$を用いて表せ。
$2025$年北海道大学理系過去問題
この動画を見る
$\boxed{1}$
$\alpha,r$を$\alpha \gt 1,r \gt 1$を満たす実数とする。
数列$\{a_n\}$を$a_1=\alpha$で公比が$r$の等比数列とする。
数列$\{b_n\}$を
$b_n=\log_{a_{n}} (a_{n+1}) (n=1,2,3,\cdots)$で定める。
(1)$b_n$を$n$と$\log_{\alpha}r$を用いて表せ。
$2025$年北海道大学理系過去問題
福田のおもしろ数学443〜不等式の証明と等号成立条件

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a,b,c$は正の実数とする。
$\sqrt[3]{abc}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \geqq 2\sqrt3$
を証明し、等号成立条件を調べてください。
この動画を見る
$a,b,c$は正の実数とする。
$\sqrt[3]{abc}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \geqq 2\sqrt3$
を証明し、等号成立条件を調べてください。
福田の数学〜京都大学2025文系第5問〜平面が定点を通ることの証明

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#恒等式・等式・不等式の証明#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
座標空間の$4$点$O,A,B,C$同一平面上にないとする。
$s,t,u$は$0$でない実数とする。
直線$OA$上の点$L$、直線$OB$の点$M$、直線$OC$上の点$N$を
$\overrightarrow{ OL }=s\overrightarrow{ OA},\quad \overrightarrow{ OM }=t\overrightarrow{ OB},\quad \overrightarrow{ ON }=u\overrightarrow{ OC }$
が成り立つようにとる。
$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で
あらゆる値をとるとき、
$3$点$L,M,N$の定める平面$LMN$は、
$s,t,u$の値に無関係な一定の点を通ることを示せ。
$2025$年京都大学文系過去問題
この動画を見る
$\boxed{5}$
座標空間の$4$点$O,A,B,C$同一平面上にないとする。
$s,t,u$は$0$でない実数とする。
直線$OA$上の点$L$、直線$OB$の点$M$、直線$OC$上の点$N$を
$\overrightarrow{ OL }=s\overrightarrow{ OA},\quad \overrightarrow{ OM }=t\overrightarrow{ OB},\quad \overrightarrow{ ON }=u\overrightarrow{ OC }$
が成り立つようにとる。
$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で
あらゆる値をとるとき、
$3$点$L,M,N$の定める平面$LMN$は、
$s,t,u$の値に無関係な一定の点を通ることを示せ。
$2025$年京都大学文系過去問題
【数Ⅱ】【微分法と積分法】定積分と恒等式2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2つの条件を同時に満たす
$x$ の3次の多項式 $P(x)$ を求めよ。
[1] 任意の2次以下の多項式 $Q(x)$ に対して
$
\int_{-1}^{1} P(x) Q(x) \,dx = 0
$
[2] $P(1) = 1$
この動画を見る
次の2つの条件を同時に満たす
$x$ の3次の多項式 $P(x)$ を求めよ。
[1] 任意の2次以下の多項式 $Q(x)$ に対して
$
\int_{-1}^{1} P(x) Q(x) \,dx = 0
$
[2] $P(1) = 1$
【数Ⅱ】【微分法と積分法】定積分と恒等式1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(x) = ax^2 + bx + 1$ とする。
任意の1次関数 $g(x)$ に対して、常に
$\int_{0}^{1} f(x) g(x) \,dx = 0$
が成り立つとき、定数 $a, b$ の値を求めよ。
この動画を見る
$f(x) = ax^2 + bx + 1$ とする。
任意の1次関数 $g(x)$ に対して、常に
$\int_{0}^{1} f(x) g(x) \,dx = 0$
が成り立つとき、定数 $a, b$ の値を求めよ。
【数Ⅱ】【微分法と積分法】条件からの関数決定2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2次関数 $f(x)$ を求めよ。
(1)$\int_{-1}^{1} f(x) \,dx = 0$,
$\int_{0}^{2} f(x) \,dx = 10$
, $\int_{-1}^{1} x f(x) \,dx = \frac{4}{3}$
(2)
$\int_{0}^{2} f(x) \,dx = 1$,
$\int_{0}^{2} x f(x) \,dx = 1$,
$\int_{0}^{2} x^2 f(x) \,dx = 2$
この動画を見る
次の条件を満たす2次関数 $f(x)$ を求めよ。
(1)$\int_{-1}^{1} f(x) \,dx = 0$,
$\int_{0}^{2} f(x) \,dx = 10$
, $\int_{-1}^{1} x f(x) \,dx = \frac{4}{3}$
(2)
$\int_{0}^{2} f(x) \,dx = 1$,
$\int_{0}^{2} x f(x) \,dx = 1$,
$\int_{0}^{2} x^2 f(x) \,dx = 2$
【数Ⅱ】【微分法と積分法】条件からの関数決定1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(x) = ax^2 + bx + c$において、
$f(-1) = 2$, $f'(0) = 0$, $\int_{0}^{1} f(x) \,dx = -2$であるとき、
定数 a, b, c の値を求めよ。
この動画を見る
$f(x) = ax^2 + bx + c$において、
$f(-1) = 2$, $f'(0) = 0$, $\int_{0}^{1} f(x) \,dx = -2$であるとき、
定数 a, b, c の値を求めよ。
【数Ⅱ】【指数関数と対数関数】対数不等式2 ※問題文は概要欄

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値があれば、それを求めよ。
また、そのときの $x$ の値を求めよ。
(1) $y = (\log_{3}{x})^2 + 2\log_{3}{x}$
(2) $y = \left( \log_{2}{\frac{4}{x}} \right) \left( \log_{2}{\frac{x}{2}} \right)$
(3) $y = (\log_{3}{x})^2 - 4\log_{3}{x} + 3 \quad (1 \leq x \leq 27)$
関数 $y = \log_{\frac{1}{3}}{x} + \log_{\frac{1}{3}}{(6 - x)}$ の最小値を求めよ。
$a > 0$, $b > 0$ のとき、不等式
$\log_{2} (a + \frac{1}{b}) + \log_{2} (b + \frac{1}{a}) \geq 2$
を証明せよ。
この動画を見る
次の関数の最大値、最小値があれば、それを求めよ。
また、そのときの $x$ の値を求めよ。
(1) $y = (\log_{3}{x})^2 + 2\log_{3}{x}$
(2) $y = \left( \log_{2}{\frac{4}{x}} \right) \left( \log_{2}{\frac{x}{2}} \right)$
(3) $y = (\log_{3}{x})^2 - 4\log_{3}{x} + 3 \quad (1 \leq x \leq 27)$
関数 $y = \log_{\frac{1}{3}}{x} + \log_{\frac{1}{3}}{(6 - x)}$ の最小値を求めよ。
$a > 0$, $b > 0$ のとき、不等式
$\log_{2} (a + \frac{1}{b}) + \log_{2} (b + \frac{1}{a}) \geq 2$
を証明せよ。
