関数の変化(グラフ・最大最小・方程式・不等式)
埼玉大 微分積分 三次関数極値の差 ヨビノリ技
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ
出典:2018年埼玉大学 過去問
この動画を見る
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ
出典:2018年埼玉大学 過去問
京都大 3次関数 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
この動画を見る
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
東京海洋大 3次関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3-15ax^2+24a^2x+a^2$
$y=f(x)$のグラフと$x$軸とが$0 \lt x \lt 1$の範囲でただ一つの共有点をもつための$a$の条件を求めよ
出典:2005年東京海洋大学 過去問
この動画を見る
$f(x)=2x^3-15ax^2+24a^2x+a^2$
$y=f(x)$のグラフと$x$軸とが$0 \lt x \lt 1$の範囲でただ一つの共有点をもつための$a$の条件を求めよ
出典:2005年東京海洋大学 過去問
京都大 関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$
すべての実数$x$にたいして不等式
$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ
出典:2014年京都大学 過去問
この動画を見る
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$
すべての実数$x$にたいして不等式
$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ
出典:2014年京都大学 過去問
早稲田大(国際教養)微分
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-3mx+m-3=0$が3個の異なる実数解$\alpha ,\beta,\gamma$をもつ$(\alpha \lt \beta \lt \gamma)m,\alpha,\beta,\gamma$の範囲を求めよ
出典:2018年早稲田大学 過去問
この動画を見る
$x^3-3mx+m-3=0$が3個の異なる実数解$\alpha ,\beta,\gamma$をもつ$(\alpha \lt \beta \lt \gamma)m,\alpha,\beta,\gamma$の範囲を求めよ
出典:2018年早稲田大学 過去問
大阪大 3次関数
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
この動画を見る
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
二階微分>0 なぜ下に凸・指数関数の微分 名古屋大の問題の補足
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
指数関数の微分の補足 解説動画です
この動画を見る
指数関数の微分の補足 解説動画です
名古屋大 微分/大小比較 東大大学院数学科卒の杉山さん代講
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ
出典:2004年名古屋大学 過去問
この動画を見る
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ
出典:2004年名古屋大学 過去問
2019東工大 栗崎先生に生徒貫太郎が教わる Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{2^8}{3^4}$
整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$
(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ
(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ
出典:2019年東京工業大学 過去問
この動画を見る
$a=\displaystyle \frac{2^8}{3^4}$
整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$
(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ
(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ
出典:2019年東京工業大学 過去問
東工大 秀才栗崎 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?
出典:1992年東京工業大学 過去問
この動画を見る
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?
出典:1992年東京工業大学 過去問
山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
05年 山口大学
次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る
05年 山口大学
次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
東大 ヨビノリ みたび登場 Mathematics Japanese university entrance exam Tokyo University
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
'95東京大学過去問題
全ての正の実数にx,yに対し$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$が成り立つような実数kの最小値
この動画を見る
'95東京大学過去問題
全ての正の実数にx,yに対し$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$が成り立つような実数kの最小値
岩手大 滋賀大 三次関数と直線 3次方程式整数解 高校数学 Mathematics Japanese university entrance exam
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=x^3-3x-1$
$f(x)=3ax+15$の解の個数
滋賀大学過去問題
n自然数、P素数
$x^3+nx^2-(5-n)x+P=0$
の1つの解が自然数である。この方程式を解け
この動画を見る
岩手大学過去問題
$f(x)=x^3-3x-1$
$f(x)=3ax+15$の解の個数
滋賀大学過去問題
n自然数、P素数
$x^3+nx^2-(5-n)x+P=0$
の1つの解が自然数である。この方程式を解け
岩手大 微分 高校数学 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=-x^4+a(x-2)^2 \quad (a>0)$
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
この動画を見る
岩手大学過去問題
$f(x)=-x^4+a(x-2)^2 \quad (a>0)$
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
日本医科大・日大(医) Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#日本医科大学#日本大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
日本大学過去問題
$y=x^3-2x^2+2x-1$と1点で接し、その他の共有点をもたない直線の方程式を求めよ。
日本医科大学過去問題
$tx^4-x+3t=0$が異なる2つの実数解をもつような実数tの範囲
この動画を見る
日本大学過去問題
$y=x^3-2x^2+2x-1$と1点で接し、その他の共有点をもたない直線の方程式を求めよ。
日本医科大学過去問題
$tx^4-x+3t=0$が異なる2つの実数解をもつような実数tの範囲
福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察5(受験編)
単元:
#数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$n$個の正の数$a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}\\$
この動画を見る
$n$個の正の数$a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}\\$
横浜市立(医)高校数学 Japanese university entrance exam questions
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^3-x^2-x+k=0 \quad (k>1)$
実根は1個であることを示せ。
(2)(1)の方程式の3根の絶対値はいずれも1より大きいことを示せ。
この動画を見る
横浜市立大学過去問題
(1)$x^3-x^2-x+k=0 \quad (k>1)$
実根は1個であることを示せ。
(2)(1)の方程式の3根の絶対値はいずれも1より大きいことを示せ。
福田の数学〜青山学院大学2022年理工学部第3問〜関数の増減と極値
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 関数\hspace{150pt}\\
f(x)=\sqrt{1-2\cos x}-\frac{1}{2}x \ \ \ (0 \leqq x \leqq \pi)\\
について以下の問いに答えよ。\hspace{50pt}\\
(1)\ f'(x)を求めよ。\hspace{100pt}\\
(2)\ f'(x) \gt 0 となるxの値の範囲を求めよ。\hspace{10pt}\\
(3)\ f(x)の増減を調べ、極値を求めよ。\hspace{28pt}
\end{eqnarray}
2022青山学院大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{3}}\ 関数\hspace{150pt}\\
f(x)=\sqrt{1-2\cos x}-\frac{1}{2}x \ \ \ (0 \leqq x \leqq \pi)\\
について以下の問いに答えよ。\hspace{50pt}\\
(1)\ f'(x)を求めよ。\hspace{100pt}\\
(2)\ f'(x) \gt 0 となるxの値の範囲を求めよ。\hspace{10pt}\\
(3)\ f(x)の増減を調べ、極値を求めよ。\hspace{28pt}
\end{eqnarray}
2022青山学院大学理工学部過去問