数Ⅲ
数Ⅲ
福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x$$-(t^2+2)y+4t+2=0$
を考える。
(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。
(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。
(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。
2021慶應義塾大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x$$-(t^2+2)y+4t+2=0$
を考える。
(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。
(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。
(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。
2021慶應義塾大学理工学部過去問
12京都府教員採用試験(数学:2番 接線系)

単元:
#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$
(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
この動画を見る
$\boxed{2}$ $f(x)=\dfrac{1}{x^2+x+1}$
(1)$y=f(x)$の概形をかけ.
(2)点$(a,0)$から,$y=f(x)$に異なる接線が2本引けるような
$a$の値の範囲を求めよ.
複素関数論① *10(1)-(3) 高専数学

単元:
#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$Z \in A \not \subset $
次の方程式を解け.
(1)$Z^6=1$
(2)$Z^4=-1$
(3)$Z^3=8i$
「$Z・r(\cos\theta+i\sin\theta)$
$r\geqq 0,0\leqq \theta \lt 2\pi」$
この動画を見る
$Z \in A \not \subset $
次の方程式を解け.
(1)$Z^6=1$
(2)$Z^4=-1$
(3)$Z^3=8i$
「$Z・r(\cos\theta+i\sin\theta)$
$r\geqq 0,0\leqq \theta \lt 2\pi」$
重積分⑥-5 #157【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
直円柱$x^2+y^2=4x$
$xy$平面,曲面$Z=xy^2$で囲まれた体積$V$を求めよ.
この動画を見る
直円柱$x^2+y^2=4x$
$xy$平面,曲面$Z=xy^2$で囲まれた体積$V$を求めよ.
重積分⑧-6 #155 【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
これを解け.
$D:\geqq 0,y\geqq 0,\dfrac{x^2}{4}+\dfrac{y^2}{4}\leqq 1$
$\iint_D \ xy \ dx \ dy$
この動画を見る
これを解け.
$D:\geqq 0,y\geqq 0,\dfrac{x^2}{4}+\dfrac{y^2}{4}\leqq 1$
$\iint_D \ xy \ dx \ dy$
重積分⑧-5 #154 【一般の変数変換(難)】(高専数学 微積II,数検1級1次解析対応)

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\iint_D \ xy\ dx\ dy$
$D:y=x^2,2y=x^2,x=y^2,2x=y^2$で囲まれた領域を求めよ.
この動画を見る
$\iint_D \ xy\ dx\ dy$
$D:y=x^2,2y=x^2,x=y^2,2x=y^2$で囲まれた領域を求めよ.
13愛知県教員採用試験(数学:10番 積分)

単元:
#積分とその応用#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{10}$これを解け.
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sin\dfrac{5}{2}x\cos\dfrac{1}{2}x\ dx$
この動画を見る
$\boxed{10}$これを解け.
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sin\dfrac{5}{2}x\cos\dfrac{1}{2}x\ dx$
重積分⑩-5 #151【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
この動画を見る
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
2021藤田医科大 微分の公式

単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=\sqrt{x+\sqrt{x^2-9}}$
$f`_{(5)}=\Box$
$\Box$を求めよ.
2021藤田医科大過去問
この動画を見る
$f(x)=\sqrt{x+\sqrt{x^2-9}}$
$f`_{(5)}=\Box$
$\Box$を求めよ.
2021藤田医科大過去問
重積分⑥-4 #146【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
直円柱$x^2+y^2\leqq 4$
平面$Z=0$,曲面$Z=4-x^2$で囲まれた体積$V$を求めよ.
この動画を見る
直円柱$x^2+y^2\leqq 4$
平面$Z=0$,曲面$Z=4-x^2$で囲まれた体積$V$を求めよ.
重積分⑨-8【広義積分】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
これを解け.
(1)$\displaystyle \int_{0}^{\infty} \\ e^{-9x^2}\ dx$
(2)$\displaystyle \int_{-\infty}^{\infty} \\ e^{-4x^2}\ dx$
(3)$\displaystyle \int_{0}^{\infty} \\ e^{-x^2} dx=\dfrac{\sqrt x}{2}$
この動画を見る
これを解け.
(1)$\displaystyle \int_{0}^{\infty} \\ e^{-9x^2}\ dx$
(2)$\displaystyle \int_{-\infty}^{\infty} \\ e^{-4x^2}\ dx$
(3)$\displaystyle \int_{0}^{\infty} \\ e^{-x^2} dx=\dfrac{\sqrt x}{2}$
重積分⑨-6【広義積分】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$D:0\leqq x\leqq 1,0\leqq y\leqq 1$とする.
$\iint_D \ \dfrac{1}{\sqrt{xy}}\ dx \ dy$
これを解け.
この動画を見る
$D:0\leqq x\leqq 1,0\leqq y\leqq 1$とする.
$\iint_D \ \dfrac{1}{\sqrt{xy}}\ dx \ dy$
これを解け.
重積分⑥-3【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a\gt 0$とする.
曲面$Z=4a^2-x^2-y^2$と
$xy$平面で囲まれた体積$V$を求めよ.
この動画を見る
$a\gt 0$とする.
曲面$Z=4a^2-x^2-y^2$と
$xy$平面で囲まれた体積$V$を求めよ.
【数Ⅲ】積分法:①逆関数を用いた積分! 曲線y=e^x,x=1,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
この動画を見る
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
微分方程式⑪-2【非線形2階微分方程式】(高専数学、数検1級)

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
これを解け.
(1)$(y+1)\dfrac{d^2y}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$y\dfrac{d^2y}{dx^2}=1-\left(\dfrac{dy}{dx}\right)^2$
この動画を見る
これを解け.
(1)$(y+1)\dfrac{d^2y}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$y\dfrac{d^2y}{dx^2}=1-\left(\dfrac{dy}{dx}\right)^2$
【数Ⅲ】積分法:②バウムクーヘン型積分! 曲線y=e^x,x=1,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
この動画を見る
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
微分方程式⑪-1【非線形2階微分方程式】(高専数学、数検1級)

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
これを解け.
(1)$\dfrac{dy}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$\dfrac{d^2y}{dx^2}=\sqrt{1-\left(\dfrac{dt}{dx}\right)^2}$
この動画を見る
これを解け.
(1)$\dfrac{dy}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$\dfrac{d^2y}{dx^2}=\sqrt{1-\left(\dfrac{dt}{dx}\right)^2}$
微分方程式⑩-2【定数係数でない微分方程式】(高専数学、数検1級)

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
これを解け.
(3)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+4x=0$
(4)$t^2\dfrac{d^2x}{dt^2}+3t\dfrac{dx}{dt}+x=0$
この動画を見る
これを解け.
(3)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+4x=0$
(4)$t^2\dfrac{d^2x}{dt^2}+3t\dfrac{dx}{dt}+x=0$
微分方程式⑩-1【定数係数でない微分方程式】(高専数学、数検1級)

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
これを解け.
(1)$t^2\dfrac{d^2x}{dt^2}+t\dfrac{dx}{dt}-x=0$
(2)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+3x=0$
この動画を見る
これを解け.
(1)$t^2\dfrac{d^2x}{dt^2}+t\dfrac{dx}{dt}-x=0$
(2)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+3x=0$
【数Ⅲ】微分法:高次導関数 次の等式を数学的帰納法によって証明せよ。nは自然数とする。d^n/dx^n cosx=cos(x+nπ/2)

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
この動画を見る
次の等式を数学的帰納法によって証明せよ。nは自然数とする。
$\dfrac{d^n}{dx^n}\cos x=\cos\left(x+\dfrac{n\pi}{2}\right)$
【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](-1/3)^n sin(nπ/2)

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(-\dfrac{1}{3}\right)^n \sin\dfrac{n\pi}{2}$
この動画を見る
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(-\dfrac{1}{3}\right)^n \sin\dfrac{n\pi}{2}$
【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](1/3)^n cosnπ

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(\dfrac{1}{3}\right)^n \cos n\pi$
この動画を見る
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(\dfrac{1}{3}\right)^n \cos n\pi$
04愛知県教員採用試験(数学:10番 重積分)

単元:
#積分とその応用#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\iint_D f \ x \ dx\ dy$
$ D:\sqrt{\dfrac{x}{4}}+\sqrt{\dfrac{y}{3}}\leqq 1 $
これを解け.
図は動画内参照
この動画を見る
$\iint_D f \ x \ dx\ dy$
$ D:\sqrt{\dfrac{x}{4}}+\sqrt{\dfrac{y}{3}}\leqq 1 $
これを解け.
図は動画内参照
04愛知県教員採用試験(数学:14番 楕円、接線、相加相乗平均)

単元:
#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{14}$ $a\gt 0,b\gt 0$
楕円$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$
の接線がx軸,y軸と交わる点を$P.Q$とする.
$PQ$の最小値を求めよ.
この動画を見る
$\boxed{14}$ $a\gt 0,b\gt 0$
楕円$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$
の接線がx軸,y軸と交わる点を$P.Q$とする.
$PQ$の最小値を求めよ.
微分方程式⑨【連立微分方程式】(高専数学、数検1級)

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{dx}{dt}=4y-\cos t \\
\dfrac{dy}{dt}=-x+\sin t
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{dx}{dt}=4y-\cos t \\
\dfrac{dy}{dt}=-x+\sin t
\end{array}
\right.
\end{eqnarray}$
これを解け.
数検準1級2次(3番 極限値)

単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$
曲線$y=2\sqrt x$上の点$P(t,2\sqrt t)$に対して,
$y$軸上に$OP=OQ$をみたす点$Q$をとる.
直線$PQ$と$x$軸との支点を$R$とする.
$\displaystyle \lim_{t\to 0} \ OR$を求めよ.
図は動画内参照
この動画を見る
$\boxed{3}$
曲線$y=2\sqrt x$上の点$P(t,2\sqrt t)$に対して,
$y$軸上に$OP=OQ$をみたす点$Q$をとる.
直線$PQ$と$x$軸との支点を$R$とする.
$\displaystyle \lim_{t\to 0} \ OR$を求めよ.
図は動画内参照
微分方程式⑧-4【非同次2階微分方程式】(高専数学、数検1級)

単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
非同次2階微分方程式を解説していきます.
この動画を見る
非同次2階微分方程式を解説していきます.
微分方程式⑧-3【非同次2階微分方程式】(高専数学、数検1級)

微分方程式⑧-2【非同次2階微分方程式】(高専数学、数検1級)

08愛知県教員採用試験(数学:10番 微分方程式)

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{10}$ $$f'(x)-2\ f(x)-2=0$
$f(0)=9$のとき,$f(1)$を求めよ.(解)
この動画を見る
$\boxed{10}$ $$f'(x)-2\ f(x)-2=0$
$f(0)=9$のとき,$f(1)$を求めよ.(解)
