複素数平面
福田の数学〜早稲田大学2023年理工学部第4問〜複素数平面上の点の軌跡
単元:
#大学入試過去問(数学)#複素数平面#微分とその応用#複素数平面#図形への応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 複素数平面上に2点A(1), B($\sqrt 3 i$)がある。ただし、$i$は虚数単位である。
複素数zに対し$w$=$\frac{3}{z}$で表される点$w$を考える。以下の問いに答えよ。
(1)z=1, $\frac{1+\sqrt 3i}{2}$, $\sqrt 3 i$のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t$\sqrt 3 i$とする。$\alpha$=$\frac{3-\sqrt 3 i}{2}$について、$\alpha z$の実部を求め、さらに($w-\alpha$)($\bar{w-\alpha}$)を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
この動画を見る
$\Large\boxed{4}$ 複素数平面上に2点A(1), B($\sqrt 3 i$)がある。ただし、$i$は虚数単位である。
複素数zに対し$w$=$\frac{3}{z}$で表される点$w$を考える。以下の問いに答えよ。
(1)z=1, $\frac{1+\sqrt 3i}{2}$, $\sqrt 3 i$のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t$\sqrt 3 i$とする。$\alpha$=$\frac{3-\sqrt 3 i}{2}$について、$\alpha z$の実部を求め、さらに($w-\alpha$)($\bar{w-\alpha}$)を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
東海大(医)虚数の回転
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{13}{12}\pi+i\sin\dfrac{13}{12}\pi$を$a+bi$を中心に$\dfrac{\pi}{6}$回転すると,
$\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$となる.
実数$a,b$を求めよ.
東海大(医)過去問
この動画を見る
$\cos\dfrac{13}{12}\pi+i\sin\dfrac{13}{12}\pi$を$a+bi$を中心に$\dfrac{\pi}{6}$回転すると,
$\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$となる.
実数$a,b$を求めよ.
東海大(医)過去問
福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。
2023北海道大学理系過去問
この動画を見る
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。
2023北海道大学理系過去問
藤田医科大 複素数の基本問題
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=1-\sqrt{3}i$
$Z^7+aZ^5-b=0$が成り立つ実数$a,b$を求めよ.
藤田医科大過去問
この動画を見る
$Z=1-\sqrt{3}i$
$Z^7+aZ^5-b=0$が成り立つ実数$a,b$を求めよ.
藤田医科大過去問
基本問題
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z+\dfrac{1}{Z}=-\sqrt{3}$のとき,
$Z^{2023}+\dfrac{1}{Z^{2023}}$の値を求めよ。
この動画を見る
$Z+\dfrac{1}{Z}=-\sqrt{3}$のとき,
$Z^{2023}+\dfrac{1}{Z^{2023}}$の値を求めよ。
2023久留米大(医)複素数の計算
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
複素数Zは$\vert Z \vert =1$で$Z^2-2Z+\dfrac{1}{Z}$が純虚数であるZの値を求めよ。
久留米大(医)過去問
この動画を見る
複素数Zは$\vert Z \vert =1$で$Z^2-2Z+\dfrac{1}{Z}$が純虚数であるZの値を求めよ。
久留米大(医)過去問
2023藤田医科大 1の7乗根の基本問題
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\piのとき
Z^7=\Box
Z^6+Z^5+Z^4+Z^3+Z^2+Z=\Box
(1-Z)(1-Z^2)(1-Z^3)×(1-Z^4)(1-Z^5)(1-Z^6)=\Box
\Boxを答えよ.$
この動画を見る
$Z=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\piのとき
Z^7=\Box
Z^6+Z^5+Z^4+Z^3+Z^2+Z=\Box
(1-Z)(1-Z^2)(1-Z^3)×(1-Z^4)(1-Z^5)(1-Z^6)=\Box
\Boxを答えよ.$
【数ⅢC】 複素数平面の基本⑬3点が一直線上にあるとき、なす角が垂直のときを考える
【数ⅢC】 複素数平面の基本⑫半直線のなす角を考える
【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
この動画を見る
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
【数ⅢC】 複素数平面の基本⑩円の方程式を条件から考える
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点z全体はどのような図形を表すか
$\vert z+1\vert=2\vert z-2\vert$
この動画を見る
次の方程式を満たす点z全体はどのような図形を表すか
$\vert z+1\vert=2\vert z-2\vert$
福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。
2023東京工業大学理系過去問
この動画を見る
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。
2023東京工業大学理系過去問
【数ⅢC】複素数平面の基本⑨垂直二等分線を考える
【数ⅢC】複素数平面の基本⑧円の方程式を考える
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
円の方程式を考える
次の方程式で与えられる円の中心、半径を求めよ
(1)$\vert z+2i\vert=3$
(2)$\vert z+3-2i\vert =1$
(3)$\vert z-i\vert=1$
この動画を見る
円の方程式を考える
次の方程式で与えられる円の中心、半径を求めよ
(1)$\vert z+2i\vert=3$
(2)$\vert z+3-2i\vert =1$
(3)$\vert z-i\vert=1$
【数ⅢC】複素数平面の基本⑥1のn乗根をド・モアブルの定理で考える
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
$z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi$のとき、$z^4+z^3+z^2+z+1$の値を求めよ
この動画を見る
$z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi$のとき、$z^4+z^3+z^2+z+1$の値を求めよ
【数ⅢC】複素数平面の基本⑤複素数の積・商の考え方
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
$\cos\dfrac{2}{3}\pi-i\sin\dfrac{2}{3}\pi$
この動画を見る
次の複素数を極形式で表せ
$\cos\dfrac{2}{3}\pi-i\sin\dfrac{2}{3}\pi$
【数ⅢC】複素数平面の基本④複素数の極形式の単位円を用いた考え方
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
$\cos\dfrac{2}{3}\pi-i\sin\dfrac{2}{3}\pi$
この動画を見る
次の複素数を極形式で表せ
$\cos\dfrac{2}{3}\pi-i\sin\dfrac{2}{3}\pi$
【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
この動画を見る
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
【数ⅢC】複素数平面の基本②複素数平面における絶対値の計算
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の複素数の絶対値を求めよ
(1)$-3+4i$ (2)$(1-2i)^2$ (3)$\dfrac{2+3i}{5-i}$
2点$A(\alpha),B(\beta)$間の距離を求めよ
(1)$\alpha=3+4i,\beta=7+5i$ (2)$\alpha=-3i,\beta=5$
この動画を見る
次の複素数の絶対値を求めよ
(1)$-3+4i$ (2)$(1-2i)^2$ (3)$\dfrac{2+3i}{5-i}$
2点$A(\alpha),B(\beta)$間の距離を求めよ
(1)$\alpha=3+4i,\beta=7+5i$ (2)$\alpha=-3i,\beta=5$
複素数平面の基本①複素数平面の基本的な考え方
【数ⅢC】複素数平面の基本①複素数平面の基本的な考え方
2023九州大学 4次方程式と複素平面上の三角形
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$x^4-2x^3+3x^2-2x+1=0$を解け.
(2)複素数平面上の$\triangle ABC$の頂点を表す複素数を$\alpha,\beta,\delta$とする.
$(\alpha-\beta)^4+(\beta-\delta)+(\delta-\alpha)^4=0$が成り立つとき,$\triangle ABC$はどのような三角形か.
2023九州大過去問
この動画を見る
(1)$x^4-2x^3+3x^2-2x+1=0$を解け.
(2)複素数平面上の$\triangle ABC$の頂点を表す複素数を$\alpha,\beta,\delta$とする.
$(\alpha-\beta)^4+(\beta-\delta)+(\delta-\alpha)^4=0$が成り立つとき,$\triangle ABC$はどのような三角形か.
2023九州大過去問
慶應(医)虚数係数の二次方程式の2解の距離
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4Z^2+4Z-\sqrt3 i=0$の2つの解の複素数平面上の距離を求めよ.
慶應(医)過去問
この動画を見る
$4Z^2+4Z-\sqrt3 i=0$の2つの解の複素数平面上の距離を求めよ.
慶應(医)過去問
慈恵医大 複素数の基本問題
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.
(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.
(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.
慈恵医大過去問
この動画を見る
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.
(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.
(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.
慈恵医大過去問
大学入試問題#444「複素数の王道手筋」 神戸大学(1998) 文系 #複素数
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
$z$:虚数
(1)
$z+\displaystyle \frac{1}{z}$が実数の時
$|z|$の値$a$を求めよ。
(2)
$|z|=a$のとき
$\omega=(z+\sqrt{ 2 }+\sqrt{ 2 }i)^4$において$|\omega|,\ argw$の範囲を求めよ。
出典:1998年神戸大学 入試問題
この動画を見る
$z$:虚数
(1)
$z+\displaystyle \frac{1}{z}$が実数の時
$|z|$の値$a$を求めよ。
(2)
$|z|=a$のとき
$\omega=(z+\sqrt{ 2 }+\sqrt{ 2 }i)^4$において$|\omega|,\ argw$の範囲を求めよ。
出典:1998年神戸大学 入試問題
藤田医科大 ドモアブルの定理
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(1+i)^n=(1-i)n$をみたす2023以下の自然数nの個数を答えよ.
2023藤田医科大過去問
この動画を見る
$(1+i)^n=(1-i)n$をみたす2023以下の自然数nの個数を答えよ.
2023藤田医科大過去問
福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$
2017浜松医科大学医学部過去問
この動画を見る
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$
2017浜松医科大学医学部過去問
長崎大(医、他)虚数方程式
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z^4=-8-8\sqrt{3}i$
これを解け.
長崎大(医,他)過去問
この動画を見る
$Z^4=-8-8\sqrt{3}i$
これを解け.
長崎大(医,他)過去問
大学入試問題#419「複素数の基本的な性質を網羅!」 東海大学医学部2017 #複素数
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師:
ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{2+\sqrt{ 5 }i}{3}$のとき
$27(1+\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\alpha^3})$の値を求めよ
出典:2017年東海大学医学部 入試問題
この動画を見る
$\alpha=\displaystyle \frac{2+\sqrt{ 5 }i}{3}$のとき
$27(1+\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\alpha^3})$の値を求めよ
出典:2017年東海大学医学部 入試問題
大学入試問題#416「工夫して計算」 早稲田大学2008 #式変形
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$x$:実数
$x^3+\displaystyle \frac{1}{x^3}=52$を満たすとき
$x^4+\displaystyle \frac{1}{x^4}$の値を求めよ
出典:2008年早稲田大学 入試問題
この動画を見る
$x$:実数
$x^3+\displaystyle \frac{1}{x^3}=52$を満たすとき
$x^4+\displaystyle \frac{1}{x^4}$の値を求めよ
出典:2008年早稲田大学 入試問題