数学(高校生) - 質問解決D.B.(データベース) - Page 171

数学(高校生)

【数A】整数の性質:高3 5月K塾共通テスト 数学IA第4問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)168を素因数分解すると 168=(ア)^(イ)×3×(ウ) である。
よって、168の正の約数の個数は(エオ)個であり、AB=168かつ3≦A<Bを満たすA,Bの組は、全部で(カ)個である。
(2)正の整数nは正の約数の個数が6個であり、正の約数の総和が168であるとする。このような正の整数nのうち、異なる2つの素因数を持つものを求めよう。
nは異なる素数p,qを用いて、n=p^(キ)・q と表せる。
このとき、nの正の約数の総和は[ク]であるから、p=(ケ) であり、n=(コサ) である。

[ク]の解答群
0: (p+p²)q
1: (1+p+p²)q
2: (p+p²)(1+q)
3: (1+p+p²)(1+q)
4: (p+p²+p³)q
5: (1+p+p²+p³)q
6: (p+p²+p³)(1+q)
7: (1+p+p²+p³)(1+q)

(3)正の整数mは正の約数の個数が12個であり、正の約数の総和が624であるとする。このような正の整数mのうち、異なる3つの素因数を持つものは m=(シスセ) である。
この動画を見る 

福田のわかった数学〜高校3年生理系031〜極限(31)関数の極限、色々な極限(1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(1)\\
\lim_{x \to 1}\frac{(x-1)^2}{|x^2-1|} を求めよ。
\end{eqnarray}
この動画を見る 

【数A】確率:高3 5月K塾共通テスト 数学IA第3問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る 

素因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを素因数分解せよ.
$81^3+4$
この動画を見る 

数学「大学入試良問集」【13−11 ガウス記号とその戦略】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
この動画を見る 

ドーナッツの面積再び!!

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ドーナツの面積=?
*図は動画内参照
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(2)〜整式と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)nを正の整数とする。f(x)はxのn+1次式で表される関数で、xが0以上\\
n以下の整数のときf(x)=0であり、f(n+1)=n+1である。このとき、\\
\\
\sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}\\
\\
を満たす最小のnは\boxed{\ \ イ\ \ }である。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

福田のわかった数学〜高校1年生030〜ガウス記号を含んだ方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} ガウス記号を含む方程式\\
次の方程式を解け。\\
(1)[2x]^2=4  (2)[2x]=[x]
\end{eqnarray}
この動画を見る 

【数Ⅱ】図形と方程式:5分で学ぶファクシミリ論法

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #チャート式#黄チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ファクシミリ論法を5分で解説!
この動画を見る 

奇数の平方の逆数の和になぜかあれが登場

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$n\to \infty$である.

$\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+・・・・・・$
$+\dfrac{1}{(2n-1)^2}=\dfrac{\Box^2}{8}$
この動画を見る 

【高校数学】三角関数の性質の考え方~θ+2nπ, -θ, θ+π, θ+π/2~ 4-3 【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
この動画を見る 

数学界の嫌われもの

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数学苦手な人の問題紹介動画です
この動画を見る 

【数Ⅲ】微分法:sinを微分するとどうなる??グラフのイメージでサクッとわかる♪

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
sinを微分するとどうなる??
この動画を見る 

空間図形 垂直について 簡単だけど大切です。

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$AD⊥△BCD$
直角である角は?
*図は動画内参照

2021静岡県
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(1)〜三角形と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)三角形ABCにおいて、\angle B=2\alpha, \angle C=2\betaとする。\\
\\
\tan\alpha\tan\beta=x, \frac{AB+AC}{BC}=y\\
\\
とするとき、yをxで表すと、y=\boxed{\ \ ア\ \ }となる。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系030〜極限(30)関数の極限、三角関数の極限(10)

アイキャッチ画像
単元: #数Ⅱ#三角関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(10)\\
\\
\lim_{x \to 0}\frac{\sqrt{9-8x+7\cos2x}-(a+bx)}{x^2}\\
\\
が有限の値となるa,bとそのときの極限値
\end{eqnarray}
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?$ e\fallingdotseq 2,71$

$6^{\sqrt7}$ VS $7^{\sqrt6}$
この動画を見る 

数学「大学入試良問集」【13−9 数学的帰納法(累積帰納法)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$a_0,a_1,a_2,・・・a_n・・・$を次のように定義する。
$a_0=\displaystyle \frac{1}{2},a_{n+1}\displaystyle \sum_{k=0}^n a_k a_{n-k}n=0,1,2,・・・)$
以下の問いに答えよ。
(1)$a_1,a_2,a_3$を求めよ。
(2)一般項$a_n$を求めよ。
(3)$b_n=\displaystyle \sum_{k=0}^n\displaystyle \frac{n!}{k!(n-k)!}a_ka_{n-k}(n=0,1,2,・・・)$を求めよ。
この動画を見る 

【理数個別の過去問解説】1978年度東京工業大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは1<a<b<cをみたす整数とし,(ab-1)(bc-1)(ca-1)はabcで割り切れるとする。このとき次の問に答えよう。
(1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第3問〜整式の割り算の余りと整数の余りの割り算の関係

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}

2021早稲田大学社会科学部過去問
この動画を見る 

福田のわかった数学〜高校2年生029〜円と放物線の位置関係(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(1)\\
\left\{\begin{array}{1}
円\ x^2+y^2=r^2 (r \gt 0)\\
放物線\ y=x^2-1
\end{array}\right.\\
\\
の共有点の個数を調べよ。
\end{eqnarray}
この動画を見る 

【理数個別の過去問解説】1968年度東京工業大学 数学 第1問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式$ab+1≦abc≦bc+ca+ab+1$をみたす自然数a,b,cのすべての組を求めよう。ただ し、a>b>cとする。
この動画を見る 

累乗の桁数

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{1000}$は$m$桁
$5^{1000}$は$n$桁

$m+n=\boxed{?}$
この動画を見る 

ドラゴン桜 東大模試数学

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^3+b^3-3ab=2020$を満たす自然数$a,b$は存在するか.

東大模試過去問
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第2問〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} \triangle OABにおいて、辺OAを1:1に内分する点をD、辺OBを2:1に内分する点\\
をEとする。線分BDと線分AEの交点をF、\overrightarrow{ OA }=\overrightarrow{ a },\ \overrightarrow{ OB }=\overrightarrow{ b },\ |\overrightarrow{ a }|=a,\ |\overrightarrow{ b }|=b\\
として、次の問いに答えよ。\\
(1)\overrightarrow{ OF }を\overrightarrow{ a },\ \overrightarrow{ b }を用いて表せ。\\
さらに、\overrightarrow{ a }・\overrightarrow{ OF }=\overrightarrow{ b }・\overrightarrow{ OF } として、以下の問いに答えよ。\\
(2)内積\overrightarrow{ a }・\overrightarrow{ b }をa,\ bを用いて表せ。\\
(3)b=1のとき、aの取りうる値の範囲を求めよ。\\
(4)b=1のとき、\triangle OABの面積Sの最大値と、そのときのaの値を求めよ。
\end{eqnarray}

2021早稲田大学社会科学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系029〜極限(29)関数の極限、三角関数の極限(9)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(9)\\
\lim_{x \to 0}\frac{\sqrt{8+12x+\cos x}-3+\sin x}{x} を求めよ。
\end{eqnarray}
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^{2x^2-1}+2・3^{(x+1)^2}-5・3^{4(x+1)}=0$
この動画を見る 

円の中に円。巣鴨 図形

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AB=10
斜線部の面積=?
*図は動画内参照

巣鴨高等学校
この動画を見る 

気付けば一瞬!! 図形

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AF=?
*図は動画内参照

この動画を見る 

数学「大学入試良問集」【13−8 数学的帰納法(不等式の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
この動画を見る 
PAGE TOP