数学(中学生)

【これなら「分かる」…!】整数:大阪府公立高等学校~全国入試問題解法

単元:
#高校入試過去問(数学)#大阪府公立高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ n $を自然数とする.
$ n \leqq \sqrt x \leqq n+1 $を満たす自然数$ x $の個数が100であるときの
$ n $の値を求めなさい.
大阪府公立高等学校過去問
この動画を見る
$ n $を自然数とする.
$ n \leqq \sqrt x \leqq n+1 $を満たす自然数$ x $の個数が100であるときの
$ n $の値を求めなさい.
大阪府公立高等学校過去問
こんな学校知ってる?

2024神奈川県の平面図形の難問

【学んだことを活かせ…!】連立方程式:明治大学付属中野高等学校~全国入試問題解法

単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.
明治大学付属中野高等学校過去問
この動画を見る
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.
明治大学付属中野高等学校過去問
【な、長い…!】平方根:洛南高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)#洛南高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (1+\sqrt2+\sqrt4+\sqrt8+\sqrt{16}+\sqrt{32})$
$ \times (1-\sqrt2+\sqrt4-\sqrt8+\sqrt{16}-\sqrt{32}$
を計算しなさい.
洛南高等学校過去問
この動画を見る
$ (1+\sqrt2+\sqrt4+\sqrt8+\sqrt{16}+\sqrt{32})$
$ \times (1-\sqrt2+\sqrt4-\sqrt8+\sqrt{16}-\sqrt{32}$
を計算しなさい.
洛南高等学校過去問
平面図形 2024京都府(改)

平方根を含む応用問題~全国入試問題解法 #shorts #高校入試 #数学 #頭の体操 #サウンド

単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{65}-5 $の整数部分を$ n $とし,小数部分を$ t $とする.
(1)$ n $はいくつか?
(2)$ \dfrac{1}{4}t^2+4t=\Box $である.
東海高校過去問
この動画を見る
$ \sqrt{65}-5 $の整数部分を$ n $とし,小数部分を$ t $とする.
(1)$ n $はいくつか?
(2)$ \dfrac{1}{4}t^2+4t=\Box $である.
東海高校過去問
この問題一瞬で解ける?

【案外戸惑う…!】整数:福岡大学付属大濠高等学校~全国入試問題解法

単元:
#数学(中学生)#中2数学#1次関数#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
直線$ y=-\dfrac{1}{2}x+10 $上の点で
$ x $座標も$ y $座標も正の整数である点は全部で$ \Box $個ある.
福岡大学付属大濠高等学校過去問
この動画を見る
直線$ y=-\dfrac{1}{2}x+10 $上の点で
$ x $座標も$ y $座標も正の整数である点は全部で$ \Box $個ある.
福岡大学付属大濠高等学校過去問
【アナタならどうする…!?】連立方程式:明治大学付属明治高等学校~全国入試問題解法

単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属明治高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2-4y^2-10x+25=0 ・・・① \\
x^2+x-6-2xy+4y=0・・・②
\end{array}
\right.
\end{eqnarray}$
上式が成り立つ$ x,y $の組をすべて求めよ.
明治大学付属明治高等学校過去問
この動画を見る
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2-4y^2-10x+25=0 ・・・① \\
x^2+x-6-2xy+4y=0・・・②
\end{array}
\right.
\end{eqnarray}$
上式が成り立つ$ x,y $の組をすべて求めよ.
明治大学付属明治高等学校過去問
この問題一瞬で解ける?

【次の一手を読め…!】文字式:東海高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)#東海高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a=2(\sqrt{13}-2)$の$ b $は整数部分であり,$ c $は小数部分である.
このとき,$ (a+3b+1)(c+1)$の値は$ \Box $である.
東海高等学校過去問
この動画を見る
$ a=2(\sqrt{13}-2)$の$ b $は整数部分であり,$ c $は小数部分である.
このとき,$ (a+3b+1)(c+1)$の値は$ \Box $である.
東海高等学校過去問
問題の意味は分かるけど解答が難しい入試問題~全国入試問題解法 #shorts #高校入試 #数学 #頭の体操 #既約分数

単元:
#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{3007}{3201}$を既約分数に直すと$ \Box $である.
慶應義塾高校過去問
この動画を見る
$ \dfrac{3007}{3201}$を既約分数に直すと$ \Box $である.
慶應義塾高校過去問
気付けば一瞬!!式の値 受験生よ。努力が実ることを証明せよ。

単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
数学を数楽に
問題文全文(内容文):
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
この動画を見る
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
【イメージできるか…!】法政大学第二高等学校:二次関数~全国入試問題解法

単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#法政大学第二高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
定義域$ -6 \leqq x \leqq -2 $である2つの関数
$ y=\dfrac{1}{2}x^2, y=ax+b(a \lt 0)$の値域が一致するような
定数$ a,b $の値を求めなさい.
法政大第二高校過去問
この動画を見る
定義域$ -6 \leqq x \leqq -2 $である2つの関数
$ y=\dfrac{1}{2}x^2, y=ax+b(a \lt 0)$の値域が一致するような
定数$ a,b $の値を求めなさい.
法政大第二高校過去問
正八角形と円

福田のおもしろ数学045〜これができたら切断のプロ〜立方体の切断

単元:
#算数(中学受験)#数学(中学生)#中1数学#空間図形#立体図形#立体切断
指導講師:
福田次郎
問題文全文(内容文):
立方体 ABCD ー EFGH を 3 点 P , Q , R を通る平面で切ったときの切り口を作図せよ。
※図は動画内参照
この動画を見る
立方体 ABCD ー EFGH を 3 点 P , Q , R を通る平面で切ったときの切り口を作図せよ。
※図は動画内参照
【理解すれば一瞬…!】方程式:法政大学国際高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#法政大学国際高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x(x+1)(2x+1)=0 $を満たす$ x $の値をすべて求めよ.
法政大国際高校過去問
この動画を見る
$ x(x+1)(2x+1)=0 $を満たす$ x $の値をすべて求めよ.
法政大国際高校過去問
福田のおもしろ数学043〜1分で求まったら天才〜四角形の面積

単元:
#算数(中学受験)#数学(中学生)#中2数学#中3数学#三平方の定理#平面図形#角度と面積#三角形と四角形
指導講師:
福田次郎
問題文全文(内容文):
$AC=19,BD=15,\angle A=\angle B=90°,\angle C=45°$の四角形$ABCD$の面積を求めよ.
この動画を見る
$AC=19,BD=15,\angle A=\angle B=90°,\angle C=45°$の四角形$ABCD$の面積を求めよ.
【ミスしやすい構造とは…!】二次方程式:東京都立八王子東高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#東京都立八王子東高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$ 3(3-x)=2(x-2)^2$を解け.
都立八王子東高校過去問
この動画を見る
2次方程式$ 3(3-x)=2(x-2)^2$を解け.
都立八王子東高校過去問
大切な因数分解の応用!~全国入試問題解法 #shorts #数学 #高校受験 #頭の体操 #サウンド

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の式を因数分解せよ.
$ (x-21)^2-13(x-21)^2+36 $
開成高校過去問
この動画を見る
次の式を因数分解せよ.
$ (x-21)^2-13(x-21)^2+36 $
開成高校過去問
福田のおもしろ数学041〜立体の切断〜立方体を切った切り口

単元:
#算数(中学受験)#数学(中学生)#中1数学#空間図形#立体図形#立体切断
指導講師:
福田次郎
問題文全文(内容文):
立方体 ABCD-EFGH を 3 点 P,Q,E を通る平面で切ったときの切り口を作図せよ。
※図は動画内参照
この動画を見る
立方体 ABCD-EFGH を 3 点 P,Q,E を通る平面で切ったときの切り口を作図せよ。
※図は動画内参照
さすがに知ってる?

【高校入試で4次の項…!?】文字式:ラ・サール高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)#ラ・サール高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x=\sqrt7+\sqrt2 $
$ y=\sqrt7-\sqrt2 $ のとき
$ x^4-6x^2y^2+y^4 $の値を求めよ.
ラ・サール高校過去問
この動画を見る
$ x=\sqrt7+\sqrt2 $
$ y=\sqrt7-\sqrt2 $ のとき
$ x^4-6x^2y^2+y^4 $の値を求めよ.
ラ・サール高校過去問
高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法

単元:
#数学(中学生)#中央大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.
(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.
$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.
(2)点$ B $の座標を求めなさい.
(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.
$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.
中央大学附属高等学校予想問題
この動画を見る
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.
(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.
$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.
(2)点$ B $の座標を求めなさい.
(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.
$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.
中央大学附属高等学校予想問題
【スマートに行こう…!】因数分解:立命館高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#立命館高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (2x+3y)^2-3(x-3y)\times (x+3y)-4y^2 $
を因数分解しなさい.
立命館高校過去問
この動画を見る
$ (2x+3y)^2-3(x-3y)\times (x+3y)-4y^2 $
を因数分解しなさい.
立命館高校過去問
福田のおもしろ数学034〜各面が合同な三角形でできた四面体の体積〜等面四面体

単元:
#数学(中学生)#中3数学#数A#図形の性質#三平方の定理#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
どの面も、5,6,7の長さの三角形でできている四面体の体積を求めよ
この動画を見る
どの面も、5,6,7の長さの三角形でできている四面体の体積を求めよ
高等学校入学試験予想問題:専修大学附属高等学校~全国入試問題解法

単元:
#数学(中学生)#専修大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.
$ \boxed{1}$
(1)
$ (\sqrt8-\sqrt{50})^3 \div \sqrt6+\sqrt{27}=? $
(2)
$ x^2y^2+5xy-24 $を因数分解しなさい.
$ \boxed{2}$
(1)
$ AB=BC=CA=6$cm,$ OA=OB=OC=6\sqrt3$cmの三角錐$OABC$がある.
$ \triangle ABC $を底面としたとき,この三角錐の高さは$ 4\sqrt6$cmである.
$ \triangle OAB $を底面としたとき,この三角錐の高さを求めなさい.
(2)
箱の中に$[1],[2],[3],[4],[5]$の5枚のカードが入っている.
この箱から,同時に2枚のカードを取り出すとき,
取り出したカードに$[3]$のカードがふくまれる確率を求めなさい.
ただし,どのカードを取り出すことも同様に確からしいものとする.
$ \boxed{3}$
$ \angle A=90°$の直角二等辺三角形の内部に,
$ PA=1,PB=\sqrt2,PC=2 $をみたす点$ P $をとり,
点$ P $と辺$ AB,BC,CA $2関して対称な点をそれぞれ$ D,E,F $とする.
(1)
$ DE,EF,FD $の長さをそれぞれ求めなさい.
(2)
五角形$ BECFD $の面積を求めなさい.
(3)
$ AB $の長さを求めなさい.
(4)
面積比$ \triangle PAB:\triangle PBC:\triangle PCA $を求めなさい.
専修大学附属高等学校予想問題
この動画を見る
次の問いに答えよ.
$ \boxed{1}$
(1)
$ (\sqrt8-\sqrt{50})^3 \div \sqrt6+\sqrt{27}=? $
(2)
$ x^2y^2+5xy-24 $を因数分解しなさい.
$ \boxed{2}$
(1)
$ AB=BC=CA=6$cm,$ OA=OB=OC=6\sqrt3$cmの三角錐$OABC$がある.
$ \triangle ABC $を底面としたとき,この三角錐の高さは$ 4\sqrt6$cmである.
$ \triangle OAB $を底面としたとき,この三角錐の高さを求めなさい.
(2)
箱の中に$[1],[2],[3],[4],[5]$の5枚のカードが入っている.
この箱から,同時に2枚のカードを取り出すとき,
取り出したカードに$[3]$のカードがふくまれる確率を求めなさい.
ただし,どのカードを取り出すことも同様に確からしいものとする.
$ \boxed{3}$
$ \angle A=90°$の直角二等辺三角形の内部に,
$ PA=1,PB=\sqrt2,PC=2 $をみたす点$ P $をとり,
点$ P $と辺$ AB,BC,CA $2関して対称な点をそれぞれ$ D,E,F $とする.
(1)
$ DE,EF,FD $の長さをそれぞれ求めなさい.
(2)
五角形$ BECFD $の面積を求めなさい.
(3)
$ AB $の長さを求めなさい.
(4)
面積比$ \triangle PAB:\triangle PBC:\triangle PCA $を求めなさい.
専修大学附属高等学校予想問題
【意味は分かる…!】整数:東京都立産業技術高等専門学校~全国入試問題解法

単元:
#数学(中学生)#高校入試過去問(数学)#東京都立産業技術高等専門学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 230 $をある自然数$ n $で割ると余りが$ 20 $になった.
このような自然数$ n $は何個あるか.
東京都立産業技術高等専門学校過去問
この動画を見る
$ 230 $をある自然数$ n $で割ると余りが$ 20 $になった.
このような自然数$ n $は何個あるか.
東京都立産業技術高等専門学校過去問
この問題一瞬で解ける?
