数学・算数の楽しさを思い出した / Ken
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
4次方程式が2つの実数解しか持たないということは・・・【早稲田大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$は整数とする。四次方程式$x^4+ax^3+bx^2+cx+3=0$の実数解が1と3となるような$a$の最大値?で最小値は?である。
早稲田大過去問
この動画を見る
$a,b,c$は整数とする。四次方程式$x^4+ax^3+bx^2+cx+3=0$の実数解が1と3となるような$a$の最大値?で最小値は?である。
早稲田大過去問
二次関数の難問!大事な考え方【神戸大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$を実数とし,$f(x)=-x^2-2x+2,g(x)=-x^2+ax+a$とする。以下の問いに答えよ。
(1)すべての実数$s,t$に対して$f(x)≧g(t)$が成り立つような,$a$の値の範囲を求めよ。
(2)$0≦x≦1を満たすすべての$x$に対して,$f(x)≧g(x)が成り立つような$a$の範囲を求めよ。
神戸大過去問
この動画を見る
$a$を実数とし,$f(x)=-x^2-2x+2,g(x)=-x^2+ax+a$とする。以下の問いに答えよ。
(1)すべての実数$s,t$に対して$f(x)≧g(t)$が成り立つような,$a$の値の範囲を求めよ。
(2)$0≦x≦1を満たすすべての$x$に対して,$f(x)≧g(x)が成り立つような$a$の範囲を求めよ。
神戸大過去問
2次方程式の入試問題!絶対に落としたくない問題です【島根大学】【数学 入試問題】
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$を実数とする。2次方程式$x^2+2ax+(a-1)=0$の解を$\alpha,\beta$とする。
(1)$\alpha$と$\beta$は異なる実数であることを示せ。
(2)$\alpha$と$\beta$のうち,少なくとも1つは負であることを示せ。
(3)$\alpha≦0,\beta≦0$であるとき,$\alpha^2+\beta^2$の最小値を求めよ。
島根大過去問
この動画を見る
$a$を実数とする。2次方程式$x^2+2ax+(a-1)=0$の解を$\alpha,\beta$とする。
(1)$\alpha$と$\beta$は異なる実数であることを示せ。
(2)$\alpha$と$\beta$のうち,少なくとも1つは負であることを示せ。
(3)$\alpha≦0,\beta≦0$であるとき,$\alpha^2+\beta^2$の最小値を求めよ。
島根大過去問
あの東大の問題の類題!「あれ」で一発で解けます【数学 入試問題】
単元:
#数学検定・数学甲子園・数学オリンピック等#数学甲子園
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
x⁶+y⁶+z⁶=3xyzを満たす整数(x,y,z)をすべて求めよ
2013数学甲子園予選
この動画を見る
x⁶+y⁶+z⁶=3xyzを満たす整数(x,y,z)をすべて求めよ
2013数学甲子園予選
あの東大の問題の類題!「あれ」で一発で解けます【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の等式を満たす整数$x,y,z$の組$(x,y,z)$をすべて求めなさい。
$x^6+y^6+z^6=3xyz$
この動画を見る
次の等式を満たす整数$x,y,z$の組$(x,y,z)$をすべて求めなさい。
$x^6+y^6+z^6=3xyz$
あの公式で一撃!これ因数分解できる? #Shorts
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$(a-b)^3+(b-c)^3-3(a-b)(b-c)(c-a)$
因数分解せよ。
この動画を見る
$(a-b)^3+(b-c)^3-3(a-b)(b-c)(c-a)$
因数分解せよ。
工夫が大事!3次関数の決定【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の4つの条件を満たす3次関数を求めよ
(i)f(0)=0,f(2)=1
(ii)0.2
(iii)f(x)は極大値0をもつ
(iv)f(x)=0の解はすべて整数
一橋2020
この動画を見る
次の4つの条件を満たす3次関数を求めよ
(i)f(0)=0,f(2)=1
(ii)0.2
(iv)f(x)=0の解はすべて整数
一橋2020
工夫が大事!3次関数の決定【一橋大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
以下の4つの条件を満たす3次関数$f(x)$を求めよ。
( i )$f(0)=0,f(2)=1$
( ii )$0.2<f(1)<0.3$
( iii )$f(x)は極限値0をもつ$
(iv)$f(x)=0の解はすべて整数$
この動画を見る
以下の4つの条件を満たす3次関数$f(x)$を求めよ。
( i )$f(0)=0,f(2)=1$
( ii )$0.2<f(1)<0.3$
( iii )$f(x)は極限値0をもつ$
(iv)$f(x)=0の解はすべて整数$
3通りで解説!xとyを「あれ」に・・・【大阪大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$x,y$が$|x|≦1$と$|y|≦1$を満たすとき,不等式
$0≦x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2}$
$≦1$
が成り立つことを示せ。
大阪大過去問
この動画を見る
実数$x,y$が$|x|≦1$と$|y|≦1$を満たすとき,不等式
$0≦x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2}$
$≦1$
が成り立つことを示せ。
大阪大過去問
【高校数学】いろんな方法で因数分解してみた #Shorts
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x^5+x^4+x^3+x^2+x+1$
因数分解せよ。
この動画を見る
$x^5+x^4+x^3+x^2+x+1$
因数分解せよ。
複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。
$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。
京都大過去問
この動画を見る
複素数$a$に対してその共役な複素数$\bar{ a }$で表す。
$a$を実数でない複素数とする。複素数平面内の円$C$が$1,-1,a$を通るならば,$C$は-$\displaystyle \frac{1}{\bar{ a }}$も通ることを示せ。
京都大過去問
大小比較!この形は超頻出なので絶対に抑えておきたい問題【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
この動画を見る
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
頻出!微分のよく見るような問題【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線$y=\displaystyle \frac{1}{2}(x^2+1)$上の点$P$における接線は$x$軸と交わるとし,その交点を$\varrho$とおく。線分$P\varrho$の長さを$L$とするとき,$L$が取りうる値の最小値を求めよ。
京都大過去問
この動画を見る
曲線$y=\displaystyle \frac{1}{2}(x^2+1)$上の点$P$における接線は$x$軸と交わるとし,その交点を$\varrho$とおく。線分$P\varrho$の長さを$L$とするとき,$L$が取りうる値の最小値を求めよ。
京都大過去問
頻出!微分のよく見るような問題【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線y=-1/2(x²+1)上の点Pにおける接線はx軸と交わるとし,その交点をQとおく。線分PQの長さをLとするとき, Lが取りうる値の最小値を求めよ。
京都大過去問
この動画を見る
曲線y=-1/2(x²+1)上の点Pにおける接線はx軸と交わるとし,その交点をQとおく。線分PQの長さをLとするとき, Lが取りうる値の最小値を求めよ。
京都大過去問
東大数学!少しひらめきを求められる問題です(誘導あり)【東京大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)実数$x$が$-1<x<1,x \neq 0$を満たすとき,次の不等式を示せ。
$(1-x)^{1-\dfrac{1}{x}}<(1+x)^{\dfrac{1}{x}}$
(2)次の不等式を示せ。
$0.9999^{101}<0.99<0.9999^{100}$
東大過去問
この動画を見る
(1)実数$x$が$-1<x<1,x \neq 0$を満たすとき,次の不等式を示せ。
$(1-x)^{1-\dfrac{1}{x}}<(1+x)^{\dfrac{1}{x}}$
(2)次の不等式を示せ。
$0.9999^{101}<0.99<0.9999^{100}$
東大過去問
数Ⅲ微分!絶対に落としたくない問題です【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。
一橋大過去問
この動画を見る
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。
一橋大過去問
対数と整数の融合問題!難問です【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{y} (6x+y)=x$を満たす正の整数$x,y$の組を求めよ。
一橋大過去問
この動画を見る
$\log_{y} (6x+y)=x$を満たす正の整数$x,y$の組を求めよ。
一橋大過去問
対数と整数の融合問題!難問です【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$log y (6x+y) =x$
を満たす正の整数の組を求めよ
一橋大過去問
この動画を見る
$log y (6x+y) =x$
を満たす正の整数の組を求めよ
一橋大過去問
2通りで解説!微分を使わなくても解けます【名古屋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$a,b$が$0<a<b<1$を満たすとき,$\dfrac{2^a-2a}{a-1}$と$\dfrac{2^b-2b}{b-1}$の大小を比較せよ。
名古屋大過去問
この動画を見る
実数$a,b$が$0<a<b<1$を満たすとき,$\dfrac{2^a-2a}{a-1}$と$\dfrac{2^b-2b}{b-1}$の大小を比較せよ。
名古屋大過去問
【中学数学あるある】大小比較せよ #Shorts
単元:
#数学(中学生)#中1数学#正の数・負の数
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$2^{48},3^{36},5^{24}$を大きい順に並べよ。
この動画を見る
$2^{48},3^{36},5^{24}$を大きい順に並べよ。
京大の整数問題!〇〇に注目!【京都大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
二つの奇数$a,b$に対して,$m=11a+b,n=3a+b$とおく。$m,n$がともに平方数であることはないことを証明せよ。
京都大過去問
この動画を見る
二つの奇数$a,b$に対して,$m=11a+b,n=3a+b$とおく。$m,n$がともに平方数であることはないことを証明せよ。
京都大過去問
京大の整数問題!〇〇に注目!【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2つの奇数a,bに対して、$m=11a+b,n=3a+b$とおく。
$m,n$が平方数でないことを証明しなさい。
京都大過去問
この動画を見る
2つの奇数a,bに対して、$m=11a+b,n=3a+b$とおく。
$m,n$が平方数でないことを証明しなさい。
京都大過去問
【工夫あり】これが本当に京大の入試問題?絶対値を含んだ積分【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
定積分$\displaystyle \int_{-1}^{1}\left| x^2-\dfrac{1}{2}x-\dfrac{1}{2} \right | dx$を求めよ。
京都大過去問
この動画を見る
定積分$\displaystyle \int_{-1}^{1}\left| x^2-\dfrac{1}{2}x-\dfrac{1}{2} \right | dx$を求めよ。
京都大過去問
ベクトルの簡単すぎる京大の問題【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle OAB$において$OA=3,OB=2,\angle AOB=90^{ \circ }$とする。$\triangle OAB$の垂心を$H$とするとき,$\overrightarrow{OH}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
京都大過去問
この動画を見る
$\triangle OAB$において$OA=3,OB=2,\angle AOB=90^{ \circ }$とする。$\triangle OAB$の垂心を$H$とするとき,$\overrightarrow{OH}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
京都大過去問
n進法の理解が深まる問題!2通りで解説!【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
10進法で表された6.75を2進法で表せ。
また、この数と、2進法で表された数101.101との積として与えられる数を2進法および4進法で表せ
京都大過去問
この動画を見る
10進法で表された6.75を2進法で表せ。
また、この数と、2進法で表された数101.101との積として与えられる数を2進法および4進法で表せ
京都大過去問
n進法の理解が深まる問題!2通りで解説!【京都大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
10進法で表された数6.75を二進法で表せ。また,この数と2進法で表された数101.0101の積として与えられる数を2進法および4進法で表せ。
この動画を見る
10進法で表された数6.75を二進法で表せ。また,この数と2進法で表された数101.0101の積として与えられる数を2進法および4進法で表せ。
【整数問題】難関大が好きなパターン!範囲を絞り込め!
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$abcd=a+b+c+d$を満たす正の整数$a,b,c,d$をすべて求めよ。
この動画を見る
$abcd=a+b+c+d$を満たす正の整数$a,b,c,d$をすべて求めよ。
【整数問題】難関大が好きなパターン!範囲を絞り込め!
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
abcd=a+b+c+dを満たす正の整数a,b,c,dを求めよ
この動画を見る
abcd=a+b+c+dを満たす正の整数a,b,c,dを求めよ
微分の難問!それぞれの関数の〇〇を比較すればOKです【滋賀大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$を$0$以下の定数とする。このとき,$f(x)=2x^3-3(a+2)x^2+8$と$g(x)=-3x^2-6ax$について,次の問いに答えよ。
(1)$x≧0$における$f(x)$の最小値を$m(a)$とする。$m(a)$を$a$の式で表せ。
(2)$s≧0,t≧0$を満たすすべての$s,t$に対して$f(s)≧g(t)$となる$a$の値の範囲を求めよ。
滋賀大過去問
この動画を見る
$a$を$0$以下の定数とする。このとき,$f(x)=2x^3-3(a+2)x^2+8$と$g(x)=-3x^2-6ax$について,次の問いに答えよ。
(1)$x≧0$における$f(x)$の最小値を$m(a)$とする。$m(a)$を$a$の式で表せ。
(2)$s≧0,t≧0$を満たすすべての$s,t$に対して$f(s)≧g(t)$となる$a$の値の範囲を求めよ。
滋賀大過去問
絶対に落としたくない問題です【自治医科大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$f(x)$は,等式$f(x)=3x^2 \displaystyle \int_{-1}^{1} f(t) dt+x+\displaystyle \int_{0}^{1} [{f(t)}]^{2} dt+$
$\displaystyle \int_{0}^{1} f(t) dt$を満たす。
$\displaystyle \int_{0}^{1} f(t) dt \neq 0$とするとき,$f(0)$の値を求めよ。
自治医科大過去問
この動画を見る
関数$f(x)$は,等式$f(x)=3x^2 \displaystyle \int_{-1}^{1} f(t) dt+x+\displaystyle \int_{0}^{1} [{f(t)}]^{2} dt+$
$\displaystyle \int_{0}^{1} f(t) dt$を満たす。
$\displaystyle \int_{0}^{1} f(t) dt \neq 0$とするとき,$f(0)$の値を求めよ。
自治医科大過去問