上智大学 - 質問解決D.B.(データベース) - Page 2

上智大学

福田の数学〜上智大学2022年TEAP理系型第3問〜最後の目が得点になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#確率分布と統計的な推測#確率分布#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
各頂点に1から4までの数が1つずつ書いてあり、振るとそれらの1つが等し
い確率で得られる正四面体の形のさいころTがある。これを用いて、2人のプレイ
ヤA, B が以下のようなゲームをする。それぞれの枠内に記したルールに従い、各
プレイヤがTを1回以上振って、最後に出た数をそのプレイヤの得点とし、得点の
多い方を勝ちとする。ここで、同点のときには常にBの勝ちとする。また、振り直
すかどうかは、各プレイヤーとも自分が勝つ確率を最大にするように選択するとす
る。このとき、Aが勝つ確率pについて答えよ。ただし、以下のそれぞれの場合に
ついて、pは0以上の整数k, nを用いて$p =\frac{2k+1}{2^n}$と表せるので、このk, nを
答えよ。
(1)$A, B$がそれぞれ1回ずつTを振る
このときpを表すk, nは、$k=\boxed{ケ} ,\ n=\boxed{コ}$である。

(2)先にAが一回振る。次にBが2回まで振ってよい(Aの得点を知っている状
況で、1回振り直してよい)
このときpを表すk,nは、$k=\boxed{サ} ,\ n=\boxed{シ}$である。

(3)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが1回振る。
このときpを表すk,nは、$k=\boxed{ス} ,\ n=\boxed{セ }$である。

(4)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、1回
振り直してよい)
このときpを表すk,nは、$k=\boxed{ソ} ,\ n=\boxed{タ}$である。

(5)先にAが3回まで振ってよい(Bの得点がまだわからない状況で、2回まで振
り直してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、
1回振り直してよい)
このときpを表すk,nは、$k=\boxed{チ} ,\ n=\boxed{ツ}$である。

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
一辺の長さが1である立方体QACB-CFGEを考える。
$\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } $
$= \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },$ とおき、実数s,tに対し
点P,Qを
$\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+$
$s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }$
を満たす点とする。
(1)点Pは直線$\boxed{あ}$上にあり、点Qは直線$\boxed{い}$上にある。
(2)直線$\boxed{あ}$と直線$\boxed{い}$とは$\boxed{う }$

$\boxed{う}$の選択肢
$(\textrm{a})$一致する $(\textrm{b})$平行である $(\textrm{c})$直交する $(\textrm{d})$交わるが直交しない。
$(\textrm{e})$ねじれの位置にあって垂直である $(\textrm{f})$ねじれの位置にあって垂直でない。

(3)線分PQの長さは、$s=\boxed{え},\ t=\boxed{お}$のとき最小値をとり、
このとき$PQ^2=\boxed{か}$である。

$\boxed{え}\ \boxed{お}\ \boxed{か}$の選択肢
$(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}$
$(\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1$
$(\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3$

(4)$s,t$が$0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1$の範囲を動くとき、線分PQの中点Mの動く領域は
$\boxed{き}$であり、その面積は$\frac{\sqrt{\boxed{オ}}}{\boxed{カ}}$である。

$\boxed{き}$の選択肢
$(\textrm{a})$正三角形 $(\textrm{b})$直角二等辺三角形 $(\textrm{c})$直角二等辺三角形でない直角三角形
$(\textrm{d})$直角二等辺三角形でない直角三角形でもない三角形 $(\textrm{e})$正方形 $(\textrm{f})$正方形でない長方形
$(\textrm{g})$長方形でない平行四辺形 $(\textrm{h})$並行四辺形でない四角形$(\textrm{i})$五角形$(\textrm{i})$六角形
(5)$s,t$が$0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1$の範囲を動くとき、線分PQが通過する領域の体積は
$\frac{\boxed{キ}}{\boxed{ク}}$である。

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(3)〜命題と必要十分な条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
(3) aを正の実数とする。 実数からなる集合X, Yを次で定める。
$X={x|0 < x < a}, Y={y|3 < y < 5}$
次のそれぞれの命題が成り立つための必要十分条件を、選択肢から1つずつ選べ。
(i) すべてのx∈Xとすべてのy∈Yに対してx<yとなる
(ii) 「すべてのx∈Xに対してx<y」となるy∈Yが存在する
(iii) すべてのx∈Xに対して「x<yとなるy∈Yが存在する」

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(2)〜平均と分散の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1(2)あるクラスの生徒は12人で、A,B,Cの3つのグループに分かれている。
Aグループは3人、Bグループは4人、Cグループは5人の生徒からなる。
このクラスでテストを行った。各人の点数は0以上10以下の整数である。
(i) A グループの生徒3人の点数の分散は6であり、そのうち2人の点数はそれぞれ2と5である。
このとき、 残りの1人の点数は[イ]である。
(ii)さらに、Bグループの生徒4人の点数の平均値は2であり、分散は3である。
Cグループの生徒5人の点数の平均値は5であり、分散は6である。
このとき、クラスの生徒12人の点数の平均値は[ウ]であり、分散は[エ]である。

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第1問(1)〜1次の近似式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#学校別大学入試過去問解説(数学)#速度と近似式#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (1) $\cos 61°$の近似値を求めたい。$y=\cos x$ の1次の近似式を用いて計算し、
小数第3位を四捨五入すると $\cos 61° ≒ 0. [ア] $を得る。
ただし、$\pi= 3.14 √3=1.73 $として用いてよい。

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(3)〜指数不等式と領域における最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)正の数の組$(x,\ y)$が
$\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}$
を満たすとき$z=xy$は$(x,\ y)=(a,\ b)$で最小値をとる。ここで、
$\log_{10}a=\frac{\boxed{ヤ}}{\boxed{ユ}},\ \log_{10}b=\frac{\boxed{ヨ}}{\boxed{ワ}}$
である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(2)〜円が直線から切り取る線分の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$t \gt 0$とし、xy平面上の直線
$l:y=-x+t$
と領域
$B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2$
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは
$t=\boxed{ム}$のときに最大値$\boxed{メ}\sqrt{\boxed{モ}}$をとる。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(1)〜必要十分条件と条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)実数の数列${a_n}$に関する以下の条件 $(P)$ を考える。
$(P) 「n\geqq N$ならば $a_n \leqq 4$」が成り立つ自然数Nが存在する
$(\textrm{i})$ 以下の選択肢から、(P) であるための必要十分条件をすべて選べ。
$(\textrm{ii})$ 以下の選択肢から、(P) であるための必要条件ではあるが十分条件ではないもの
をすべて選べ。
$(\textrm{iii})$ 以下の選択肢から、(P) の否定であるものをすべて選べ。
選択肢$(\textrm{a})$「$n\gt N$ ならば$a_n \leqq 4$」が成り立つ自然数Nが存在する
$(\textrm{b})$ 「$n \lt N$ ならば$an \leqq 4$」 が成り立つ自然数Nが存在する
$(\textrm{c})$ 「$n\geqq N$ならば$a_n\gt 4$」 が成り立つ自然数Nが存在する
$(\textrm{d}) a_n \gt 4$ を満たす自然数n が無限個存在する
$(\textrm{e}) a_n \leqq 4$ を満たす自然数nが無限個存在する
$(\textrm{f}) a_n \gt 4$ を満たす自然数nは存在しても有限個である
$(\textrm{g}) a_n \leqq 4$ を満たす自然数nは存在しても有限個である

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第3問〜3次方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを実数の定数として3次関数
$f(x)=9x^3-9x+a$
を考える。
(1) $y=f(x)$のグラフとx軸の共有点が2つ以上あるようなaの範囲は
$\boxed{ネ}\sqrt{\boxed{ノ}}\leqq a \leqq \boxed{ハ}\sqrt{\boxed{ヒ}}$である。
(2)$a= \boxed{ハ}\sqrt{\boxed{ヒ}}$のとき、方程式$f(x)= 0$の最も小さい解は
$\frac{\boxed{フ}}{\boxed{ヘ}}\sqrt{\boxed{ヒ}}$
であり、$y=f(x)$のグラフとx軸の囲む図形の面積は$\frac{\boxed{マ}}{\boxed{ミ}}$である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第2問〜空間の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間内に立方体ABCD-EFGHがある。辺ABを2:1に内分
する点をP、線分CPの中点をQとする。
(1)$\overrightarrow{ AQ }=\frac{\boxed{ス}}{\boxed{セ}}\overrightarrow{ AB }+$
$\frac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{ AD }$である。
(2)線分AG上の点Rを$\overrightarrow{ QR }∟\overrightarrow{ AG }$となるようにとると
$\overrightarrow{ AR }=\frac{\boxed{チ}}{\boxed{ツ}}\overrightarrow{ AG }$である。
(3)直線QRが平面EFGHと交わる点をSとすると
$\overrightarrow{ AS }=\frac{\boxed{テ}}{\boxed{ト}\overrightarrow{ AB }}+$
$\frac{\boxed{ナ}}{\boxed{二}}\overrightarrow{ AD }+\boxed{ヌ}\ \overrightarrow{ AE }$である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(3)〜サイコロの目による円と直線の位置関係の確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(3)円$(x-3)^2+(y-3)^2=5$とlが共有点を持たない確率は$\frac{\boxed{サ}}{\boxed{シ}}$である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(2)点(2,\ 4)がDに含まれる確率は
$\frac{\boxed{キ}}{\boxed{ク}}$
点(2,\ 3)がDに含まれる確率は$\frac{\boxed{ケ}}{\boxed{コ}}$である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(1)〜サイコロの目の約数倍数の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(1)Sが整数になる確率は$\frac{\boxed{ア}}{\boxed{イ}}$
Sが3の整数倍になる確率は$\frac{\boxed{ウ}}{\boxed{エ}}$
Sが4の整数倍になる確率は$\frac{\boxed{オ}}{\boxed{カ}}$である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} Oを原点とする座標平面において、楕円D:\frac{x^2}{6}+\frac{y^2}{2}=1 上に異なる2点P_1,P_2\\
がある。P_1における接線l_1とP_2における接線l_2の交点をQ(a,\ b)とし、線分P_1P_2の\\
中点をRとする。\\
\\
(1)P_1の座標を(x_1,\ y_1)とするとき、l_1の方程式はx_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0\\
と表される。\\
\\
(2)直線P_1P_2の方程式は、a,bを用いてax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0と表される。\\
\\
(3)3点O,R,Qは一直線上にあって\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }が成り立つ。\\
\\
(4)l_1とl_2のどちらもy軸と平行ではないとする。このとき、l_1とl_2の傾きは\\
tの方程式(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0 の解である。\\
\\
(5)l_1とl_2が直交しながらP_1,P_2が動くとする。\\
(\textrm{i})Qの軌跡の方程式を求めよ。   (\textrm{ii})Rのy座標の最大値を求めよ。\\
(\textrm{iii})Rの軌跡の概形を描け。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。\\
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に\\
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に\\
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結\\
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、\\
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。\\
(1)m=3の時を考える。n=1ならば、畑の数は常に3個で、1通りある。\\
n=2ならば、畑の数は3個、5個、6個で3通りある。n=3ならば、畑の数は\\
\boxed{\ \ ク\ \ }通りある。n=10ならば、畑の数は\boxed{\ \ ケ\ \ }通りある。\\
(2)m=3でn=3のとき、畑の数が8個になる植え方は\boxed{\ \ コ\ \ }通りある。\\
(3)m=6のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り\\
あるが、それらすべてが等確率になるように植えることにする。n=2のとき、\\
畑が8個である確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}であり、畑が9個である確率は\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
畑が10個である確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。n=3のとき、\\
畑が10個である確率をpとすると\boxed{\ \ け\ \ }である。\\
\\
\\
\boxed{\ \ け\ \ }の選択肢:\\
(\textrm{a})p \geqq \frac{1}{100}  (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100}  (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}\\
(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500}  (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000}  (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}\\
(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000}  (\textrm{h})p \lt \frac{1}{10000}
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第2問〜集合の要素と包含関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 実数からなる集合A,B,Cを次のように定義する。ただし、a \gt 0\\
A=\left\{x |\ |x| \lt a \right\}\\
B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}\\
C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}\\
\\
(1)A \cap Bが空集合であるための必要十分条件はa \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }である。\\
(2)A \supset Bであるための必要十分条件はa \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }である。\\
\\
\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }の選択肢:(\textrm{a})= (\textrm{b})\lt  (\textrm{c})\leqq  (\textrm{d})\gt  (\textrm{e})\geqq (\textrm{f})≠  \\
\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }の選択肢:(\textrm{a})1 (\textrm{b})2  (\textrm{c})3  (\textrm{d})5  (\textrm{e})7 (\textrm{f})10  \\
(\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7\\
\\
(3)-1 \boxed{\ \ き\ \ }Cであり、5 \boxed{\ \ く\ \ }Cである。\\
\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }の選択肢:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset\\
(4)Cに属する整数は\boxed{\ \ オ\ \ }個ある。\\
(5)A \subset Cとなるaのうち、整数で最大のものは\boxed{\ \ カ\ \ }である。\\
(6)A \supset Cとなるaのうち、整数で最小のものは\boxed{\ \ キ\ \ }である。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第1問(3)〜非回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 不等式\\
1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1\\
が表す座標空間内の領域の体積は\boxed{\ \ え\ \ }である。\\
\\
\boxed{\ \ え\ \ }の選択肢:\\
(\textrm{a})\frac{3\pi}{2}  (\textrm{b})3\pi  (\textrm{c})\frac{3\pi^2}{2}  (\textrm{d})3\pi^2\\
(\textrm{e})\pi\log 2  (\textrm{f})\frac{\pi\log 2}{2}  (\textrm{g})3\pi^2\log 2  
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第1問(2)〜n進法

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ nを20以上の整数とする。n進法で表したとき、n^3の位の数が1,n^2の位の数が2,\\
n^1の位の数が3,n^0の位の数が0である数1230_{(n)}をn+1進法で表すと(n+1)^2の位\\
の数は\boxed{\ \ あ\ \ }であり、(n+1)^1の位の数は\boxed{\ \ い\ \ }であり、(n+1)^0の位の数は\boxed{\ \ う\ \ }である。\\
\\
\boxed{\ \ あ\ \ }\ ~\ \boxed{\ \ う\ \ }の選択肢:\\
(\textrm{a})0  (\textrm{b})1  (\textrm{c})2  (\textrm{d})3\\
(\textrm{e})n-2  (\textrm{f})n-3  (\textrm{g})n-1  (\textrm{g})n  
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第1問(1)〜偽陽性偽陰性の条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する\\
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。\\
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、\\
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には\\
感染している確率は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}であり、少なくとも1回は陽性であったが、\\
実際には病原菌には感染していない確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}である。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} (2)\ 野菜Aには1個あたり栄養素x_1が8g、栄養素x_2が4g、栄養素x_3が2g\\
含まれ、野菜Bには1個あたり栄養素x_1が4g、栄養素x_2が6g、栄養素x_3\\
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで\\
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素x_1\\
を42g以上、栄養素x_2を48g以上、栄養素x_3を30g以上含まれるように\\
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース\\
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は\\
\\
(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })\\
\\
である。ただし、 \boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }とする。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} (1)\ 関数f(x)に対する以下の条件(P)を考える。\\
(P): f(x) \gt 3を満たす5以上の自然数nが存在する。\\
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。\\
(\textrm{a})f(n) \leqq 3を満たす5以上の自然数nが存在する。\\
(\textrm{b})f(n) \gt 3を満たす5未満の自然数nが存在する。\\
(\textrm{c})f(n) \leqq 3を満たす5未満の自然数nが存在する。\\
(\textrm{d})nが5以上の自然数ならばf(n) \leqq 3が成り立つ。\\
(\textrm{e})nが5未満の自然数ならばf(n) \leqq 3が成り立つ。\\
(\textrm{f})nが5未満の自然数ならばf(n) \gt 3が成り立つ。\\
(\textrm{g})f(n) \gt 3が5以上の全ての自然数nに対して成り立つ。\\
(\textrm{h})f(n) \leqq 3が5以上の全ての自然数nに対して成り立つ。\\
(\textrm{i})f(n) \leqq 3が5未満の全ての自然数nに対して成り立つ。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数\\
を順に\alpha,\beta,\gammaとする。3次関数\\
f(x)=(x-\alpha)(x-\beta)(x-\gamma)\\
を考える。\\
(1)関数y=f(x)が極値をとらない確率は\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}である。\\
(2)関数y=f(x)が極大値をとるとき、その極大値の取り得る値のうち最小のもの\\
は\boxed{\ \ ニ\ \ }で、最大のものは\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}である。\\
(3)関数y=f(x)が極大値\boxed{\ \ ニ\ \ }をとる確率は\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}である。\\
(4)関数y=f(x)が極大値\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}を取る確率は\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第2問〜放物線の接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} xy平面において、放物線C:y=x^2と、互いに直交するCの2つの接線l,mを\\
考える。\\
(1)lが点(2,\ 4)を通るとき、mの方程式は\\
y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
であり、lとmの交点の座標は\\
(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})\\
である。\\
\\
(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する\\
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC\\
と交わる点をRとする。このとき\\
\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }\\
である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 立方体OADB-CFGEを考える。0 \leqq x \leqq 1となる実数xに対し、\overrightarrow{ OP }=x\ \overrightarrow{ OG }と\\
なる点Pを考え、\angle APB=\thetaとおく。\\
\\
(1)x=0のとき、\theta=\boxed{\ \ し\ \ }\ である。また、x=1のとき、\theta=\boxed{\ \ す\ \ }\ である。\\
\\
\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }\ の選択肢\\
(\textrm{a})0  (\textrm{b})\frac{\pi}{6}  (\textrm{c})\frac{\pi}{3}  (\textrm{d})\frac{\pi}{2}\\
(\textrm{e})\frac{2}{3}\pi  (\textrm{f})\frac{5}{6}\pi  (\textrm{g})\pi \\
\\
(2)0 \lt x \lt 1の範囲で\theta=\frac{\pi}{2}となるxの値は、x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }} である。\\
\\
(3)y=\cos\thetaとおき、yをxの関数と考える。このとき、yをxで表せ。また、\\
0 \leqq x \leqq 1の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・\\
座標軸との共有点・極値・変曲点などを明らかにせよ。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}  
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)実数全体で定義され、実数の値をとる関数f(x)に対する次の条件\ p\ を考える。\\
p:「K以上の全ての実数xに対してf(x) \geqq 1」が成り立つような実数Kが存在する。\\
(\textrm{i})\ 次に挙げた関数(\textrm{a})~(\textrm{d})のそれぞれについて、pを満たすならばo、pを\\
満たさないならばxをマークせよ。\\
(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x\\
(\textrm{ii})次の条件がpの否定になるように、\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }のそれぞれの選択肢から、\\
あてはまるものを選べ。\\
・「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }実数に対して\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }\\
\\
\boxed{\ \ あ\ \ }の選択肢:(\textrm{a})K以上の  (\textrm{b})K未満の  \\
\boxed{\ \ い\ \ }の選択肢:(\textrm{a})すべての  (\textrm{b})ある  \\
\boxed{\ \ う\ \ }の選択肢:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1  \\
\boxed{\ \ え\ \ }の選択肢:(\textrm{a})どんな実数Kについても成り立つ  \\(\textrm{b})成り立つような実数Kが存在する  \\
(\textrm{iii})関数f(x)に対して、g(x)=2f(x)で関数g(x)を定める。次に挙げた命題(\textrm{A})~(\textrm{D})\\
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。\\
(\textrm{A})f(x)がpを満たすならば、g(x)もpを満たす。\\
(\textrm{B})g(x)がpを満たすならば、f(x)もpを満たす。\\
(\textrm{C})f(x)がpを満たさないならば、g(x)もpを満たさない。\\
(\textrm{D})f(x)がpを満たさないならば、g(x)もpを満たす。\\
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(2)〜常用対数の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)(\textrm{i})不等式\\
\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}\\
を満たす自然数kは\ \boxed{\ \ ス\ \ }\ である。\\
(\textrm{ii})7^{35}は\ \boxed{\ \ セ\ \ }\ 桁の整数である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 媒介変数表示\\
x=\frac{2}{\cos\theta}, y=3\tan\theta+1\\
で表される図形Cを考える。\\
\\
(1)Cは頂点(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })、焦点(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })、\\
漸近線y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }をもつ双曲線である。\\
(2)双曲線Cと直線x=4は、2点(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})\\
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP