京都大学
#京都大学1965#微分_28#元高校教員
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3}$において
$f'(1)$を定義に従って求めよ。
出典:1965年京都大学
この動画を見る
$f(x)=\displaystyle \frac{1}{x^3}$において
$f'(1)$を定義に従って求めよ。
出典:1965年京都大学
大学入試問題#917「さすがに落とせん」
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ
出典:1965年京都大学
この動画を見る
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ
出典:1965年京都大学
大学入試問題#915「減点祭りの問題」 #京都大学1965 #積分方程式
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$x \gt 1$とする。
$\displaystyle \int_{1}^{x} (x-t)f(t)dt=x^4-2x^2+1$を満たす整式$f(t)$を定めよ。
出典:1965年京都大学
この動画を見る
$x \gt 1$とする。
$\displaystyle \int_{1}^{x} (x-t)f(t)dt=x^4-2x^2+1$を満たす整式$f(t)$を定めよ。
出典:1965年京都大学
大学入試問題#862「計算力と根性!」 #京都大学(2023) #数列
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=3 \\
a_n=\displaystyle \frac{S_n}{n}+(n-1)・2^n
\end{array}
\right.
\end{eqnarray}$
を満たすような数列$\{a_n\}$の一般項を求めよ
出典:2023年京都大学 入試問題
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=3 \\
a_n=\displaystyle \frac{S_n}{n}+(n-1)・2^n
\end{array}
\right.
\end{eqnarray}$
を満たすような数列$\{a_n\}$の一般項を求めよ
出典:2023年京都大学 入試問題
大学入試問題#850「おもろいパズル」 #京都大学(2023) #有理化 #式変形
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{55}{2\sqrt[ 3 ]{ 9 }+\sqrt[ 3 ]{ 3 }+5}$を有利化せよ
出典:2023年京都大学
この動画を見る
$\displaystyle \frac{55}{2\sqrt[ 3 ]{ 9 }+\sqrt[ 3 ]{ 3 }+5}$を有利化せよ
出典:2023年京都大学
大学入試問題#818「なんてことはない問題」 #京都大学(1979)
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{2^n}{n} \gt n$を満たす自然数$n$の範囲を求めよ。
出典:1979年京都大学 入試問題
この動画を見る
$\displaystyle \frac{2^n}{n} \gt n$を満たす自然数$n$の範囲を求めよ。
出典:1979年京都大学 入試問題
大学入試問題#815「工夫は1回で大丈夫」 #京都大学(1970) #帰納法
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$(\displaystyle \frac{n+1}{2})^n \gt n!$を証明せよ。
ここに$n$は2以上の整数とする。
出典:1970年京都大学 入試問題
この動画を見る
$(\displaystyle \frac{n+1}{2})^n \gt n!$を証明せよ。
ここに$n$は2以上の整数とする。
出典:1970年京都大学 入試問題
大学入試問題#813「見通しは立てやすい」 #京都大学(1972) #極限
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
次の式で定められる関数$F(x)$に対して、
$\displaystyle \lim_{ x \to \infty } [F(x) -log\ x]$を求めよ。
ただし、$x \gt 0$とする。
$F(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{(t+1)(t+3)}dt$
出典:1972年京都大学 入試問題
この動画を見る
次の式で定められる関数$F(x)$に対して、
$\displaystyle \lim_{ x \to \infty } [F(x) -log\ x]$を求めよ。
ただし、$x \gt 0$とする。
$F(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{(t+1)(t+3)}dt$
出典:1972年京都大学 入試問題
大学入試問題#811「方向性が見えれば、気合いで解ける」 #京都大学(1972) #式変形
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
実数または複素数の$x,y,z,a$について、
$x+y+z=a$
$x^3+y^3+z^3=a^3$
の2式が成立するとき、$x,y,z$のうちの少なくとも1つは$a$に等しいことを示せ。
出典:1972年京都大学
この動画を見る
実数または複素数の$x,y,z,a$について、
$x+y+z=a$
$x^3+y^3+z^3=a^3$
の2式が成立するとき、$x,y,z$のうちの少なくとも1つは$a$に等しいことを示せ。
出典:1972年京都大学
【高校数学】京都大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分79日目~47都道府県制覇への道~【㉒京都】【毎日17時投稿】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
【京都大学 2024】
$a$は$a≧1$を満たす定数とする。座標平面上で、次の4つの不等式が表す領域を$D_a$ とする。
$\displaystyle x≧0, \frac{e^x-e^{-x}}{2}≦y, y≦ \frac{e^x+e^{-x}}{2}, y≦a$
次の問いに答えよ。
(1) $D_a$の面積$S_a$を求めよ。
(2) $\displaystyle \lim_{a\to \infty}S_a$を求めよ。
この動画を見る
【京都大学 2024】
$a$は$a≧1$を満たす定数とする。座標平面上で、次の4つの不等式が表す領域を$D_a$ とする。
$\displaystyle x≧0, \frac{e^x-e^{-x}}{2}≦y, y≦ \frac{e^x+e^{-x}}{2}, y≦a$
次の問いに答えよ。
(1) $D_a$の面積$S_a$を求めよ。
(2) $\displaystyle \lim_{a\to \infty}S_a$を求めよ。
京都大 2024文系数学
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
ある自然数を八進法,九進法,十進法で表したら桁数が同じ最大の自然数は?
$0.3010<\log_{10}{3}<0.3011$
$0.4771<\log_{10}{2}<0.4772$
2024京都大過去問
この動画を見る
ある自然数を八進法,九進法,十進法で表したら桁数が同じ最大の自然数は?
$0.3010<\log_{10}{3}<0.3011$
$0.4771<\log_{10}{2}<0.4772$
2024京都大過去問
京大の整数問題【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b$は3で割り切れないが
$a^3+b^3$は81で割り切れる
$a^2+b^2$が最小となるような$a,b$を求めよ
京都大過去問
この動画を見る
$a,b$は3で割り切れないが
$a^3+b^3$は81で割り切れる
$a^2+b^2$が最小となるような$a,b$を求めよ
京都大過去問
減点注意!?満点を取れた人はたぶん少ない問題【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a_1=2,a_{n+1}=2a_n-1$
で定められる数列$an$がある
$a_n^2-2a_n>10^{15}$
を満たす最小の自然数nを求めよ
京都大入試問題過去問
この動画を見る
$a_1=2,a_{n+1}=2a_n-1$
で定められる数列$an$がある
$a_n^2-2a_n>10^{15}$
を満たす最小の自然数nを求めよ
京都大入試問題過去問
大学入試問題#666「受験生には是非解いてほしい良問」 京都大学(1969)
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
実数$x,y$が次の範囲を動くものとする。
$x \geqq 0,\ y \geqq 0,\ x+y \geqq 1$
$a$が正の定数であるとき
$f(x,y)=\sqrt{ x }+a\sqrt{ y }$の最小値を求めよ
出典:1969年京都大学 入試問題
この動画を見る
実数$x,y$が次の範囲を動くものとする。
$x \geqq 0,\ y \geqq 0,\ x+y \geqq 1$
$a$が正の定数であるとき
$f(x,y)=\sqrt{ x }+a\sqrt{ y }$の最小値を求めよ
出典:1969年京都大学 入試問題
数Ⅲ頻出問題!確実に取れるようになっておこう!【京都大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle$ABCは条件$\angle B$=2,$\angle A,BC$=1を満たす三角形のうちで
面積が最大のものであるとする。
このとき、$cos\angle B$を求めよ。
京都大入試過去問
この動画を見る
$\triangle$ABCは条件$\angle B$=2,$\angle A,BC$=1を満たす三角形のうちで
面積が最大のものであるとする。
このとき、$cos\angle B$を求めよ。
京都大入試過去問
kとk+1ということは・・・【京都大学】【数学 入試問題】
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
京都大過去問
この動画を見る
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
京都大過去問
大学入試問題#587「落とせない問題」 京都大学(1960) #方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x^3+x+2=0$のとき
$x^5-x$の値を求めよ
出典:1960年京都大学 入試問題
この動画を見る
$x^3+x+2=0$のとき
$x^5-x$の値を求めよ
出典:1960年京都大学 入試問題
大学入試問題#584「これは落としたくない!!」 京都帝国大学(1937) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{2x+3}{x^3+x^2-2x} dx$
出典:1937年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{2x+3}{x^3+x^2-2x} dx$
出典:1937年京都帝国大学 入試問題
大学入試問題#579「技のかけ方は好みでしょうか」 京都帝国大学(1939) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\sin^4\ x}{\cos^3\ x} dx$
出典:1939年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{\sin^4\ x}{\cos^3\ x} dx$
出典:1939年京都帝国大学 入試問題
大学入試問題#578「定数aにかまっていられない」 京都帝国大学(1939) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3a} \displaystyle \frac{2x}{(x^2-a^2)^{\frac{2}{3}}} dx$
出典:1939年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{3a} \displaystyle \frac{2x}{(x^2-a^2)^{\frac{2}{3}}} dx$
出典:1939年京都帝国大学 入試問題
大学入試問題#576「逆に閃かないと苦戦」 京都帝国大学(1938) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\sin\theta+\cos\theta}{3+\sin2\theta} d\theta$
出典:1938年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{\sin\theta+\cos\theta}{3+\sin2\theta} d\theta$
出典:1938年京都帝国大学 入試問題
大学入試問題#573「沼にはまらないように!!」 京都帝国大学(1937) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(a^3+x^3)}$
出典:1937年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{dx}{x(a^3+x^3)}$
出典:1937年京都帝国大学 入試問題
大学入試問題#566「計算力勝負」 京都帝国大学(1936) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3}{x^2-3x+2}\ dx$
出典:1936年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{x^3}{x^2-3x+2}\ dx$
出典:1936年京都帝国大学 入試問題
大学入試問題#565「これは落とせない」 京都帝国大学(1935) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x-1}{e^x+1}\ dx$
出典:1935年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{e^x-1}{e^x+1}\ dx$
出典:1935年京都帝国大学 入試問題
大学入試問題#544「これはさすがに合同式か・・・・」 京都大学(2023) #整式
単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x^{2023}-1$を$x^4+x^3+x^2+x+1$で割ったときの余りを求めよ
出典:2023年京都大学 入試問題
この動画を見る
$x^{2023}-1$を$x^4+x^3+x^2+x+1$で割ったときの余りを求めよ
出典:2023年京都大学 入試問題
大学入試問題#540「これは平均点の調整すらならないような」 京都大学(2023) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \sqrt{ x }\ log(x^2)\ dx$
出典:2023年京都大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{4} \sqrt{ x }\ log(x^2)\ dx$
出典:2023年京都大学 入試問題
【京大数学有名過去問】tan1°は有理数か、を証明してみよう!
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
tan1°は有理数かの証明動画です
この動画を見る
tan1°は有理数かの証明動画です
大学入試問題#517「どこでも解説されてる良問」 京都大学(2018) #整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$n^3-yn+9$が素数となるような整数$n$をすべて求めよ。
出典:2018年京都大学 入試問題
この動画を見る
$n^3-yn+9$が素数となるような整数$n$をすべて求めよ。
出典:2018年京都大学 入試問題
【別解あり】2023年京大の三角関数!円に内接する多角形は頻出です【京都大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。
(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。
京都大過去問
この動画を見る
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。
(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。
京都大過去問
2023年京大の漸化式!典型的なパターンが詰まった問題です【京都大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
{${ a_n}$}は次の条件を満たしている。
${ a_1}=3$、${ a_n}=\displaystyle \frac{{ S_n}}{n}+(n-1)・2^{n}(n=2,3,4…)$
ただし,${ S_n}={ a_1}+{ a_2}+・・・+{ a_n}$である。このとき、数列{${ a_n}$}の一般項を求めよ。
京都大過去問
この動画を見る
{${ a_n}$}は次の条件を満たしている。
${ a_1}=3$、${ a_n}=\displaystyle \frac{{ S_n}}{n}+(n-1)・2^{n}(n=2,3,4…)$
ただし,${ S_n}={ a_1}+{ a_2}+・・・+{ a_n}$である。このとき、数列{${ a_n}$}の一般項を求めよ。
京都大過去問