東京理科大学 - 質問解決D.B.(データベース)

東京理科大学

大学入試問題#902「いやーこれはしんどかった」 #東京理科大学(2010)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
点$(x,y)$は$x^2+y^2=1$を満たしているとき
$\displaystyle \frac{2x+y+1}{3x+y+5}$の最大値と最小値を求めよ。

出典:2010年東京理科大学
この動画を見る 

#東京理科大学2023#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ e }} \displaystyle \frac{e}{x^2+e} dx$

出典:2023年東京理科大学
この動画を見る 

大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$

出典:2022年東京理科大学
この動画を見る 

大学入試問題#873「コメント欄が賑わいそう」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{2}{(x+1)(x+2)(x+3)} dx$

出典:2022年東京理科大学 大学入試問題
この動画を見る 

大学入試問題#763「読みの入った式変形」 東京理科大学理学部(2003) #複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt t \lt 2\pi$とする
$z=\displaystyle \frac{1+\cos\ t+i\ \sin\ t}{1-\cos\ t-i\ \sin\ t}$

(1)$0 \lt t \lt \pi$における$z$の偏角を弧度法で表せ
(2)$\displaystyle \int_{\frac{\pi}{2}}^{\pi} |z|dt$を求めよ。

出典:2003年東京理科大学理学部 入試問題
この動画を見る 

大学入試問題#762「再生回数は、期待できない」 東京理科大学工学部(2003) #曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
曲線$y=(2x+1)\sqrt{ 2x+1 }$の区間$0 \leq x \leq \displaystyle \frac{1}{3}$にある部分の長さを求めよ。

出典:2003年東京理科大学工学部 入試問題
この動画を見る 

大学入試問題#761「微積の入試勉強は、まずこれから!」 東京理科大学理学部(2002) #微積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$F(x)$を
$F(x)=\displaystyle \int_{0}^{x} (\sin\ t+\cos\ t)^2 dt$と定める。
$F(x),\displaystyle \lim_{ x \to \infty } \displaystyle \frac{F(x)}{x},\displaystyle \lim_{ x \to 0 } \displaystyle \frac{F(x)}{x}$を求めよ。

出典:2002年東京理科大学理学部 入試問題
この動画を見る 

大学入試問題#760「ほぼ一直線」 東京理科大学(2003) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
定積分
$I=\displaystyle \int_{1}^{4} t^2\sin(\displaystyle \frac{\pi}{4}t\sqrt{ t })\ dt$を求めよ。

出典:2003年東京理科大学 入試問題
この動画を見る 

大学入試問題#759「サムネみすった」 東京理科大学(2002) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{12}} \cos\ x・\cos\ 2x・\cos\ 3x\ dx$

出典:2002年東京理科大学 入試問題
この動画を見る 

大学入試問題#758 「ミスりようがない。」 東京理科大学理学部(2002) #方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
方程式$(x+2)(x+3)(x-4)(x-5)=44$を解け。

出典:2002年東京理科大学理学部 入試問題
この動画を見る 

大学入試問題#757「綺麗な基本問題」 東京理科大学(2001) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=1+\displaystyle \frac{1}{2}ce^{-x}$において、定数$c$は
$c=\displaystyle \int_{0}^{\frac{\pi}{2}} e^t f(t)\sin\ t\ dt$を満たす。
このとき、$c$の値を求めよ。

出典:2001年東京理科大学工学部 入試問題
この動画を見る 

大学入試問題#753「普通に超良問」 東京理科大学理工学部(1999) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(2x)=\displaystyle \int_{0}^{\pi} f(t) dt+K\ x\ \cos\ x$
$f'(\pi)=\displaystyle \frac{\pi}{2}$
を満たすとき、定数$K$の値と、関数$f(x)$を求めよ。

出典:1999年東京理科大学理工学部 入試問題
この動画を見る 

大学入試問題#750「超良問!」 東京理科大学工学部(2001) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{e^{\tan\ x}}{\cos^4x} dx$

出典:2001年東京理科大学工学部 入試問題
この動画を見る 

大学入試問題#749「まあミスれん」 東京理科大学(2000) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int e^{\sqrt[ 3 ]{ x }} dx$

出典:2000年東京理科大学工学部 入試問題
この動画を見る 

大学入試問題#746「慣れれば瞬間部分積分!?」 東京理科大学(2024) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{3}^{5} (x-3)^3(5-x)^5 dx$

出典:2024年東京理科大学 入試問題
この動画を見る 

大学入試問題#741「頭のラジオ体操」 東京理科大学(2009) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$b_1=\displaystyle \frac{1}{2},$
$b_{n+1}=-3b_n+\displaystyle \frac{2n^2-6n-17}{n^2+3n+2}$を満たす数列$\{b_n\}$の一般項を求めよ。

出典:2009年東京理科大学全学部 入試問題
この動画を見る 

大学入試問題#711「この問題好きすぎ(笑)」 東京理科大学(2013) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^2} \sqrt[ n ]{ {}_{ 4n }P_{2n} }$

出典:2013年トウキョウ理科大学入試問題
この動画を見る 

大学入試問題#709「ちょっと大変」 東京理科大学(2012)整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k,l,m,n$は自然数とする。
条件$k・l・m・n=k+l+m+n,$
$k \leq l \leq m \leq n$を満たす組$(k,l,m,n)$をすべて求めよ

出典:2012年東京理科大学 入試問題
この動画を見る 

大学入試問題#708「数検1級1次でもみたことある」 東京理科大学(2013) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\sqrt[ n ]{ {}_{ 2n } P_n }$

出典:2013年東京理科大学 入試問題
この動画を見る 

大学入試問題#704 東京理科大学(2013) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x\ \sin\displaystyle \frac{x}{3} dx$

出典:2013年東京理科大学
この動画を見る 

大学入試問題#703「まあ落としたくない」 東京理科大学(2014) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \displaystyle \frac{x}{\sqrt{ 2x+1 }} dx$

出典:2014年東京理科大学 入試問題
この動画を見る 

大学入試問題#702「落としたくない」 東京理科大学(2013) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{\sqrt{ x }+1} dx$

出典:2013年東京理科大学 入試問題
この動画を見る 

大学入試問題#681「綺麗な良問」  東京理科大学(2016) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\sin\ 4x}{\sqrt{ 1+\sin^2x }} dx$

出典:2016年東京理科大学 入試問題
この動画を見る 

大学入試問題#680「よく見る形」 東京理科大学(2015) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } (\displaystyle \frac{x+3}{x-3})^x$

出典:2015年東京理科大学 入試問題
この動画を見る 

大学入試問題#678「基本問題」 東京理科大学(2016) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3}{\sqrt{ 2x^2+3 }} dx$

出典:2016年東京理科大学 入試問題
この動画を見る 

大学入試問題#676「たぶん良い問題」 東京理科大学(2017) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{4x+1}{x^4+2x^3+x+2}dx$

出典:2017年東京理科大学 入試問題
この動画を見る 

大学入試問題#635「意外と簡単」 公立諏訪東京理科大学 #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int e^x\{f'(x)+f(x)\} dx$

(2)$\displaystyle \int e^x \displaystyle \frac{1+\sin\ x}{1+\cos\ x}\ dx$

出典:2023年公立諏訪東京理科大学 入試問題
この動画を見る 

大学入試問題#630「落ち着いて慌てない」 東京理科大学(2015) #指数対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{2^x-2^{-x}}{2}$とする
$f(b)=\displaystyle \frac{15}{8}$のとき
$f(b+log_23)$の値を求めよ

出典:2015年東京理科大学 入試問題
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第3問〜対数関数と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上で、曲線$y$=$\sqrt 5\log x$ ($x$>0)を$C$とし、$C$上の点A($a$, $\sqrt 5\log a$) ($a$>0)をとる。ただし、$\log$は自然対数とする。点Aにおける$C$の接線を$l$とし、$l$と$y$軸の交点をQ(0,$q$)とする。また、点Aにおける$C$の法線を$m$とし、$m$と$y$軸の交点をR(0,$r$)とする。
(1)$q$を、$a$を用いて表せ。
(2)$r$を、$a$を用いて表せ。
(3)線分QRの長さが$3\sqrt 5$となるような$a$の値を求めよ。
(4)$\angle$ARQ=$\frac{\pi}{6}$となるような$a$の値を求めよ。
(5)$a$=$e^2$とする。このとき、$x$軸、曲線$C$および直線$l$で囲まれた部分の面積を求めよ。ただし、$e$は自然対数の底である。
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第2問〜直線の交点と関数の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上に点A(2,0)と点B(0,1)がある。正の実数$t$に対して、$x$軸上の点P(2+$t$, 0)と$y$軸上の点Q(0, 1+$\displaystyle\frac{1}{t}$)を考える。
(1)直線AQの方程式を、$t$を用いて表せ。
(2)直線BPの方程式を、$t$を用いて表せ。
直線AQと直線BPの交点をR($u$,$v$)とする。
(3)$u$と$v$を、$t$を用いて表せ。
(4)$t$>0の範囲で、$u$+$v$の値を最大にする$t$の値を求めよ。
この動画を見る 
PAGE TOP