三角比への応用(正弦・余弦・面積) - 質問解決D.B.(データベース) - Page 4

三角比への応用(正弦・余弦・面積)

福田の数学〜慶應義塾大学2022年総合政策学部第4問〜折り紙を折ってできる線分、角、面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。\\
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて\\
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。\\
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。\\
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り\\
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。\\
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ\\
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。\\
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り\\
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は\\
それぞれ D, F, C, J と重なっているため図中には表示していない)\\
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって\\
いるため図中には表示していない)\\
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目\\
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある\\
Jが重なる点をMとする。\\
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)\\
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように\\
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を\\
Nとする。\\
(10)折るのをやめる。\\
\\
このとき、BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },\\
\\
\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}\\
\\
ここで、\triangle JKMの面積をS_1,\triangle JMNの面積をS_2とすると\\
\\
\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}\\
\\
となる。\\
※(1)~(10)の画像は動画参照
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

【中学生から理解できる!】三角比(さんかくひ)[ エッセンシャル版 ]:~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
三角比に関して解説していきます.
この動画を見る 

阪大の証明問題!解けますか?【数学 入試問題】【大阪大学 理系】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の自然数とする。三角形$ABC$において,辺$AB$の長さを$c$,辺$CA$の長さを$b$で表す。$ \angle ACB=n \angle ABC$であるとき,$ c<nb $を示せ。

大阪大理系過去問
この動画を見る 

阪大の証明問題!ぜひとも取りたい問題【数学 入試問題】【大阪大学 文系】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,辺$AB$の長さを$c$,辺$CA$の長さを$b$で表す。

$\angle ACB=3\angle ABC$であるとき,$c<3b$を示せ。

大阪大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 座標平面上の四角形ABCDは以下の条件を満たすとする。\\
(\textrm{a})頂点Aの座標は(-1,-1)である。\\
(\textrm{b})四角形の各辺は原点を中心とする半径1の円と接する。\\
(\textrm{c})\angle BCDは直角である。\\
また、辺ABの長さをlとし、\angle ABC=\thetaとする。\\
\\
(1)\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}である。\\
\\
(2)辺CDの長さが\frac{5}{3}であるとき、l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}\ である。\\
\\
(3)\thetaは鋭角とする。四角形ABCDの面積が6であるとき、l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}\ ,\ \\
\\
\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}である。\\
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

京大の三角比!気づければ簡単!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\alpha,\beta$が$a>0°,\beta>0°,\alpha+\beta<180°$かつ$sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$sin\alpha+sin\beta$の取りうる範囲を求めよ。

京都大過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 半径4\sqrt2の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さは\\
それぞれAB=4\sqrt6,BC=10,C=6とする。\\
(1)\cos\angle ABC=\boxed{\ \ テ\ \ }である。平面ABCで球面Sを切った切り口の円をTとする。\\
Tの半径は\boxed{\ \ ト\ \ }である。点Dが円T上を動くとき、\triangle DABの面積の最大値は\\
\boxed{\ \ ナ\ \ }である。\\
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは\boxed{\ \ ニ\ \ }である。\\
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
この動画を見る 

簡単すぎる京大の入試問題!解けますか?【数学】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle ABC$において、$AB=2,AC=1$とする。$\angle BAC$の二等分線と辺$BC$の交点を$D$とする。$AD=BD$となるとき、$\triangle ABC$の面積を求めよ。

京都大過去問
この動画を見る 

福田の数学〜千葉大学2022年理系第2問〜三角形と三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標平面において、原点Oと点A(1,0)と点B(0,1)がある。0 \lt t \lt 1に対し、\\
線分BO,OA,ABのそれぞれをt:(1-t)に内分する点をP,Q,Rとする。\\
(1)\triangle PQRの面積をtの式で表せ。\\
(2)\triangle PQRが二等辺三角形になるときのtの値を全て求めよ。\\
(3)\theta = \angle RPQとする。(2)それぞれの場合に\cos\thetaを求めよ。
\end{eqnarray}

2022千葉大学理系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第2問〜平面上の三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

正五角形の作図と証明

アイキャッチ画像
単元: #数Ⅰ#複素数平面#図形と計量#三角比への応用(正弦・余弦・面積)#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
正五角形を作図せよ.
この動画を見る 

tan

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
tanx=
この動画を見る 

おうぎ形と正方形 令和4年度 愛媛県ラスト問題(改) 数学 2022 入試問題100題解説83問目!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2022愛媛県
この動画を見る 

三角比の拡張 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の拡張に関して解説していきます.
この動画を見る 

2022年東京大 (理系)最初の一問!!

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。

2022東京大学理系問題文改め
この動画を見る 

【数学Ⅰ/三角比】円に内接する四角形②

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円に内接する四角形$ABCD$がある。
$AB=\sqrt{ 7 },BC=2\sqrt{ 7 },CD=\sqrt{ 3 },DA=2\sqrt{ 3 }$のとき、次のものを求めよ。

(1)
$\cos\angle ABC$

(2)
対角線$AC$の長さ

(3)
四角形$ABCD$の面積$S$
この動画を見る 

【数学Ⅰ/三角比】円に内接する四角形①

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円$O$に内接する四角形$ABCD$がある。
$AB=3,$ $BC=CD=\sqrt{ 3 },$ $\cos\angle ABC=\displaystyle \frac{\sqrt{ 3 }}{6}$のとき、次のものを求めよ。
(1)対角線$AC$の長さ
(2)辺$AD$の長さ
(3)円$O$の半径
この動画を見る 

【数学Ⅰ/三角比】正弦定理を使って辺の比を求める問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、$\displaystyle \frac{\sin A}{4}=\displaystyle \frac{\sin B}{5}=\displaystyle \frac{\sin C}{2}$が成立しているとき、次の問いに答えよ。
(1)3辺の比$a:b:c$を求めよ。
(2)$\cos B$の値を求めよ。
この動画を見る 

【数学Ⅰ/三角比】余弦定理の使い方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、次の値を求めよ。
(1)$a=2\sqrt{ 3 },b=3,c=30^{ \circ }$のとき、$C$。

(2)$a=8,b=5,c=7$のとき、$C$。
この動画を見る 

【数学Ⅰ/三角比】正弦定理の使い方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、$a=2\sqrt{ 2 },b=2,A=45^{ \circ }$のとき、$B$および外接円の半径$R$を求めよ。
この動画を見る 

cosで合成 2通りで解説!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2}cosθ+\frac{\sqrt 3}{2} sinθ$を
$▢cos(θ - ○)$の形に直せ
この動画を見る 

sin sin sin sin sin sin sin sin sin sin sin sin

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\displaystyle \lim_{ θ \to 0 } \frac{sin(sin(sin θ))}{θ}
$
この動画を見る 

図形的イメージ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(sinx)' = cosx
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [3] 外接円の半径が3である\triangle ABCを考える。点Aから直線BCへ引いた垂線と直線BC\\
との交点をDとする。\\
\\
(1)AB=5, AC=4とする。このとき\sin\angle ABC=\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}, AD=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }} である。\\
\\
(2) 2辺AB,ACの長さの間に2AB+AC=14 の関係があるとする。\\
このとき、ABの長さの取り得る値の範囲は\boxed{\ \ ト\ \ } \leqq AB \leqq \boxed{\ \ ナ\ \ } であり、\\
AD=\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}AB^2+\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}AB と表せるので、ADの長さの最大値は\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

超有名問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
図形内のxの角度を求めよ.
この動画を見る 

全米をsin撼させた問題です。

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{sinx}{n} = ?$
(a) 0
(b) 1
(c) 3
(d) 6
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]右の図のように、\triangle ABCの外側に辺AB,BC,CAをそれぞれ1辺とする\\
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ\\
線分で結んだ図形を考える。以下において\\
BC=a, CA=b, AB=c\\
\angle CAB=A, \angle ABC=B, \angle BCA=C とする。\\
\\
(1)b=6, c=5, \cos A=\frac{3}{5}のとき、\sin A=\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}であり、\\
\triangle ABCの面積は\boxed{\ \ タチ\ \ }、\triangle AIDの面積は\boxed{\ \ ツテ\ \ }である。\\
\\
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。\\
このとき、S_1-S_2-S_3 は\\
・0° \lt A \lt 90°のとき\boxed{\ \ ト\ \ } ・A=90°のとき\boxed{\ \ ナ\ \ }\\
・90° \lt A \lt 180°のとき\boxed{\ \ ニ\ \ }\\
\\
\boxed{\ \ ト\ \ }~\boxed{\ \ ニ\ \ }の解答群\\
⓪0である  ①正の値である  ②負の値である  ③正の値も負の値もとる\\
\\
(3)\triangle AID,\triangle BEF,\triangle CGHの面積をそれぞれT_1,T_2,T_3とする。\\
このとき、\boxed{\ \ ヌ\ \ }である。\\
\\
\boxed{\ \ ヌ\ \ }の解答群\\
⓪a \lt b \lt cならばT_1 \gt T_2 \gt T_3\\
①a \lt b \lt cならばT_1 \lt T_2 \lt T_3\\
②Aが鈍角ならばT_1 \lt T_2 かつT_1 \lt T_3\\
③a,b,cの値に関係なく、T_1 = T_2 = T_3\\
\\
(4)\triangle ABC,\triangle AID,\triangle BEF,\triangle CGHのうち、外接円の半径が最も小さいもの\\
を求める。0° \lt A \lt 90°のとき、ID \boxed{\ \ ネ\ \ } BCであり、\\
(\triangle AIDの外接円の半径)\boxed{\ \ ノ\ \ }(\triangle ABCの外接円の半径)\\
であるから、外接円の半径が最も小さい三角形は\\
0° \lt A \lt B \lt C \lt 90°のとき、\boxed{\ \ ハ\ \ }である。\\
0° \lt A \lt B \lt 90° \lt Cのとき、\boxed{\ \ ヒ\ \ }である。\\
\\
\boxed{\ \ ネ\ \ }、\boxed{\ \ ノ\ \ }の解答群\\
⓪\lt   ①=   ②\gt\\
\\
\boxed{\ \ ハ\ \ }、\boxed{\ \ ヒ\ \ }の解答群\\
⓪\triangle ABC   ①\triangle AID   ②\triangle BEF   ③\triangle CGH\\
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

【数Ⅰ】図形と計量:正四面体の体積を一瞬で求める方法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【中学数学 三平方の定理 立体図形】
1辺の長さがaの正四面体の体積を求めよ
この動画を見る 

【数Ⅰ】三角比総まとめ【三角比の基本をざっくりと振り返ろう】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の基本に関して解説していきます.
この動画を見る 

【数Ⅰ】円に内接する四角形【余弦定理を使い倒せ!】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 四角形ABCDは円に内接しており,AB=2,BC=4,CD=3,DA=3である.
(1)cosA,BDの長さを求めよ.
(2)四角形ABCDの面積を求めよ.$
この動画を見る 
PAGE TOP