図形と計量

この問題解ける?

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
図で,$A,B,C,D$は円$O$の周上の点で$AO\parallel BC$である.$\angle AOB=49°$のとき,
$\angle ADC$の大きさを求めよ.
この動画を見る
図で,$A,B,C,D$は円$O$の周上の点で$AO\parallel BC$である.$\angle AOB=49°$のとき,
$\angle ADC$の大きさを求めよ.
円の半径と言われたら?成蹊

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
辺ABと辺BCの両方に接する円の半径は?
成蹊高等学校
この動画を見る
辺ABと辺BCの両方に接する円の半径は?
成蹊高等学校
高校数学:数Ⅰ:図形と計量:三角比への応用:「三角形の形状」の考え方!

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$\sin A=\cos B\sin C$が成り立つとき,この三角形はどのような形をしているか。
$△ABC$において,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) $a\sin A=b\sin B$
(2) $\sin A=2\cos B\sin C$
(3) $a\cos A=b\cos B$
この動画を見る
$△ABC$において,$\sin A=\cos B\sin C$が成り立つとき,この三角形はどのような形をしているか。
$△ABC$において,次の等式が成り立つとき,この三角形はどのような形をしているか。
(1) $a\sin A=b\sin B$
(2) $\sin A=2\cos B\sin C$
(3) $a\cos A=b\cos B$
二等辺三角形と外接円 京都女子

これ結局なんなん?

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角比サインコサインタンジェントって結局何なのかに関して解説していきます。
この動画を見る
三角比サインコサインタンジェントって結局何なのかに関して解説していきます。
気付けば一瞬!!角の和

円と接線と角度 2通りで解説!!

2024年共通テスト解答速報〜数学ⅠA第1問(2)〜福田の入試問題解説

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角形の辺の比(内分・外分・二等分線)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
図 1 のように、電柱の影の先端は坂の斜面(以下、坂)にあるとする。また、坂には傾斜を表す道路標識が設置されていてをそこには 7 %と表示されているとする。電柱の太さと影の幅は無視して考えるものとする。また。地面と坂は平面であるとし、地面と坂が交わってできる直線を$\ell$とする。電柱の先端を点 A とし、根もとを点 B とする。電柱の影について。地面にある部分を線分 BC とし、坂にある部分を線分 CD とする。線分BC、CDがそれぞれ$\ell$と重直であるとき、電柱の影は坂に向かってまっすぐにのびているということにする。
※図は動画内参照
電柱の影が坂に向かってまっすぐにのびているとする。このとき、 4 点 A.B. C. D を通る平面は$\ell$と重直である。その平面において、図 2 のように、直線 ADと直線BCの交点を P とすると、太陽高度とは $\angle APB$の大きさのことである。
※図は動画内参照
道路標識の 7 %という表示は、この坂をのぼったとき、100m の水平距離に対して 7m の割合で高くなることを示している。nを1以上 9 以下の整数とするとき、坂の傾斜角$\angle DCP$の大きさについて
$n° \lt \angle DCP \lt n°+1°$
を満たすnの値は シ である。
以下では、$\angle DCP$の大きさは、ちょうどシ°であるとする。
ある日、電柱の影が坂に向かってまっすぐにのびていたとき、影の長さを調べたところBC= 7 m、 CD= 4 m であり、太陽高度は $angle\ APB$=45°であった。点 D から直線 AB に重直な直線を引き、直物 AB との交点を E とするとき
BE=ス×セm
であり
DE=(ソ+アタ×チ)m
である。よって電柱の高さは、小数点第2位で四捨五入するとソmであることがわかる。
別の日、電柱の影が坂に向かってまっすぐにのびていたときの太陽高度は刻= 42°であった。電住の高さがわかったので、前回調べた日からの影の長さの変化を知ることができる。電柱の影について、坂にある第分の長さは
$\dfrac{AB-テ×ト}{ナ+ニ×ト}m$
である。AB=ツmとして、これを計算することにより、この日の電柱の陰について、坂にある部分の長さは、前回調べた4mより約1.2mだけ長いことが分かる。
2024共通テスト過去問
この動画を見る
図 1 のように、電柱の影の先端は坂の斜面(以下、坂)にあるとする。また、坂には傾斜を表す道路標識が設置されていてをそこには 7 %と表示されているとする。電柱の太さと影の幅は無視して考えるものとする。また。地面と坂は平面であるとし、地面と坂が交わってできる直線を$\ell$とする。電柱の先端を点 A とし、根もとを点 B とする。電柱の影について。地面にある部分を線分 BC とし、坂にある部分を線分 CD とする。線分BC、CDがそれぞれ$\ell$と重直であるとき、電柱の影は坂に向かってまっすぐにのびているということにする。
※図は動画内参照
電柱の影が坂に向かってまっすぐにのびているとする。このとき、 4 点 A.B. C. D を通る平面は$\ell$と重直である。その平面において、図 2 のように、直線 ADと直線BCの交点を P とすると、太陽高度とは $\angle APB$の大きさのことである。
※図は動画内参照
道路標識の 7 %という表示は、この坂をのぼったとき、100m の水平距離に対して 7m の割合で高くなることを示している。nを1以上 9 以下の整数とするとき、坂の傾斜角$\angle DCP$の大きさについて
$n° \lt \angle DCP \lt n°+1°$
を満たすnの値は シ である。
以下では、$\angle DCP$の大きさは、ちょうどシ°であるとする。
ある日、電柱の影が坂に向かってまっすぐにのびていたとき、影の長さを調べたところBC= 7 m、 CD= 4 m であり、太陽高度は $angle\ APB$=45°であった。点 D から直線 AB に重直な直線を引き、直物 AB との交点を E とするとき
BE=ス×セm
であり
DE=(ソ+アタ×チ)m
である。よって電柱の高さは、小数点第2位で四捨五入するとソmであることがわかる。
別の日、電柱の影が坂に向かってまっすぐにのびていたときの太陽高度は刻= 42°であった。電住の高さがわかったので、前回調べた日からの影の長さの変化を知ることができる。電柱の影について、坂にある第分の長さは
$\dfrac{AB-テ×ト}{ナ+ニ×ト}m$
である。AB=ツmとして、これを計算することにより、この日の電柱の陰について、坂にある部分の長さは、前回調べた4mより約1.2mだけ長いことが分かる。
2024共通テスト過去問
斜線部の面積を求めよ!2024早稲田佐賀

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照
2024早稲田佐賀高等学校
この動画を見る
斜線部の面積=?
*図は動画内参照
2024早稲田佐賀高等学校
正多角形の内角と外角 京都府

単元:
#数Ⅰ#図形と計量#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
ある正多角形において、1つの外角の大きさの9倍が、1つの内角の大きさと等しいとき、この正多角形の辺の数を求めよ。
京都府
この動画を見る
ある正多角形において、1つの外角の大きさの9倍が、1つの内角の大きさと等しいとき、この正多角形の辺の数を求めよ。
京都府
正四面体を回転!!

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問前編〜空間図形の通過範囲の面積と体積

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、ェ$\gt 0$の領域において点 A ( 0 , -1 , 0 )から点 B ( 0 , 1 , 0 )まで移動する C 上の動点を P とする。
( 1 )下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R のz座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体について、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、$\fbox{ア}$で表される概形となり、その面積は$\fbox{イ}$である。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1:$\fbox{ウ}$に内分する点である。点 Pの位置に依らず、線分の長さについて$\fbox{エ}×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MHが通過する領域の概形は$\fbox{オ}$であり、面積は$\frac {\sqrt {{\fbox{カ}}}}{\fbox{キ}}\pi$である。
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線は$/fbox{ク}$が描く曲線である。
$\fbox{ク}$の解答群
①点Q
②点R
③設問(a)で考えた点H
④線分QRとyz平面との交点
⑤線分QRを1:$\sqrt{2}$に内分する点
⑥線分QRを$\sqrt{2}$:1に内分する点
⑦三角形PQRの重心からッ線分QRに引いた垂線と線分QRとの交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\frac{\fbox{ケ}}{\fbox{コ}}\pi$である。また$\angle PQR$の面積は、線分 PQを直径とする円の面積の$\frac{\fbox{サ}}{\pi}$倍である。よって、立体$V$の体積は$\frac{\fbox{シ}}{\fbox{ス}}$である。
( 2 ) $z \geqq 0$の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線$L$を考える。ただし、 Q, T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。
点 P が( 1 , 0 , 0 )であるとき、放物線$L$を表す式は
$y=0,z=\fbox{セソ}x^2+\fbox{タ}$(ただし、-1 \leq x \leq 1)であり、この放物線と線分PQで囲まれる図形の面積は$\frac{\fbox{チ}}{\fbox{ツ}}$である。
点 P が点 A から点 B まで移動するとき、放物線$L$と線分 PQ で囲まれる図形が通過してできる立体の体積は$\frac{\fbox{テト}}{\fbox{ナ}}$である。
2023杏林大学過去問
この動画を見る
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、ェ$\gt 0$の領域において点 A ( 0 , -1 , 0 )から点 B ( 0 , 1 , 0 )まで移動する C 上の動点を P とする。
( 1 )下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R のz座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体について、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、$\fbox{ア}$で表される概形となり、その面積は$\fbox{イ}$である。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1:$\fbox{ウ}$に内分する点である。点 Pの位置に依らず、線分の長さについて$\fbox{エ}×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MHが通過する領域の概形は$\fbox{オ}$であり、面積は$\frac {\sqrt {{\fbox{カ}}}}{\fbox{キ}}\pi$である。
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線は$/fbox{ク}$が描く曲線である。
$\fbox{ク}$の解答群
①点Q
②点R
③設問(a)で考えた点H
④線分QRとyz平面との交点
⑤線分QRを1:$\sqrt{2}$に内分する点
⑥線分QRを$\sqrt{2}$:1に内分する点
⑦三角形PQRの重心からッ線分QRに引いた垂線と線分QRとの交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\frac{\fbox{ケ}}{\fbox{コ}}\pi$である。また$\angle PQR$の面積は、線分 PQを直径とする円の面積の$\frac{\fbox{サ}}{\pi}$倍である。よって、立体$V$の体積は$\frac{\fbox{シ}}{\fbox{ス}}$である。
( 2 ) $z \geqq 0$の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線$L$を考える。ただし、 Q, T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。
点 P が( 1 , 0 , 0 )であるとき、放物線$L$を表す式は
$y=0,z=\fbox{セソ}x^2+\fbox{タ}$(ただし、-1 \leq x \leq 1)であり、この放物線と線分PQで囲まれる図形の面積は$\frac{\fbox{チ}}{\fbox{ツ}}$である。
点 P が点 A から点 B まで移動するとき、放物線$L$と線分 PQ で囲まれる図形が通過してできる立体の体積は$\frac{\fbox{テト}}{\fbox{ナ}}$である。
2023杏林大学過去問
弧

この公式証明できる?

単元:
#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角比の相互関係の公式の証明について解説していきます。
この動画を見る
三角比の相互関係の公式の証明について解説していきます。
【共通テスト】数学IA 第1問で満点取る思考回路、解説します(2023年本試)

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第1問で満点取る思考回路、解説
(1)
実数$x$についての不等式$|x+6| \leqq 2$の解は[アイ]$ \leqq x \leqq $[ウエ]である。
よって実数$a,b,c,d$が$|(1-\sqrt{ 3 }(a-b)(c-d)+6|\leqq 2$を満たしているとき、
$1-\sqrt{ 3 }$は負であることに注意すると、$(a-b)(c-d)$のとり得る値の範囲は
[オ]+[カ]$\sqrt{ 3 } \leqq (a-b)(c-d) \leqq$[キ]+[ク]$\sqrt{ 3 }$であることがわかる。
$(a-b)(c-d)=$[キ]+[ク]$\sqrt{ 3 }$・・・・①
であるとき、さらに
$(a-b)(c-d)=-3+\sqrt{ 3 }$・・・・②
が成り立つならば
$(a-b)(c-d)=$[ケ]+[コ]$\sqrt{ 3 }$・・・・③
であることが、等式①、②、③の左辺を展開して比較することによりわかる。
(2)
点Oを中心とし、半径が5である円0がある。
この円周上に2点A,BをAB=6となるようにとる。
また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
①$\sin \angle ACB =$[サ]である。また、点Cを$\angle ACB$が純角となるようにとるとき、$\cos \angle ACB =$[シ]である。
②点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直角ABに垂直な直線を引き、直線ABとの交点をDとするとき、$\tan \angle OAD =$[ス]である。
また、$\triangle ABC$の面積は[セソ]である。
この動画を見る
【共通テスト】数学IA 第1問で満点取る思考回路、解説
(1)
実数$x$についての不等式$|x+6| \leqq 2$の解は[アイ]$ \leqq x \leqq $[ウエ]である。
よって実数$a,b,c,d$が$|(1-\sqrt{ 3 }(a-b)(c-d)+6|\leqq 2$を満たしているとき、
$1-\sqrt{ 3 }$は負であることに注意すると、$(a-b)(c-d)$のとり得る値の範囲は
[オ]+[カ]$\sqrt{ 3 } \leqq (a-b)(c-d) \leqq$[キ]+[ク]$\sqrt{ 3 }$であることがわかる。
$(a-b)(c-d)=$[キ]+[ク]$\sqrt{ 3 }$・・・・①
であるとき、さらに
$(a-b)(c-d)=-3+\sqrt{ 3 }$・・・・②
が成り立つならば
$(a-b)(c-d)=$[ケ]+[コ]$\sqrt{ 3 }$・・・・③
であることが、等式①、②、③の左辺を展開して比較することによりわかる。
(2)
点Oを中心とし、半径が5である円0がある。
この円周上に2点A,BをAB=6となるようにとる。
また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
①$\sin \angle ACB =$[サ]である。また、点Cを$\angle ACB$が純角となるようにとるとき、$\cos \angle ACB =$[シ]である。
②点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直角ABに垂直な直線を引き、直線ABとの交点をDとするとき、$\tan \angle OAD =$[ス]である。
また、$\triangle ABC$の面積は[セソ]である。
正八角形と正方形

正方形と平行四辺形 どっちが大きい?

単元:
#数Ⅰ#図形と計量#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
面積を比べたとき大きいのはどっち?
*マッチ棒は同じ
A.正方形
B.平行四辺形
C.同じ
*図は動画内参照
この動画を見る
面積を比べたとき大きいのはどっち?
*マッチ棒は同じ
A.正方形
B.平行四辺形
C.同じ
*図は動画内参照
15度75度90度の直角三角形の比

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x:y:z=?
*図は動画内参照
この動画を見る
x:y:z=?
*図は動画内参照
気付けば一瞬!!おうぎ形

これだけでわかるの?面積が大きいのはどっち?

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
面積が大きいのは長方形 or 正方形
*図は動画内参照
この動画を見る
面積が大きいのは長方形 or 正方形
*図は動画内参照
福田の数学〜三角形の面積をxで表したいが〜慶應義塾大学2023年商学部第1問(3)〜三角比の図形への応用

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
( 3 ) I 辺の長さが 2 の正四面体 ABCD において、辺 BD の中点を M 、辺 CD の中点を N とする。また、辺 AD 上に点 L を定め、 DL =xとする。このとき、$\triangle LMN$の面積が$\triangle ABC$の面積の$dfrac{1}{3}$になるのは$x=\dfrac{\fbox{ケ}}{\fbox{コ}}+\dfrac{\sqrt{\fbox{サシ}}}{ス}$のときである。
2023慶應義塾大学商学部過去問
この動画を見る
( 3 ) I 辺の長さが 2 の正四面体 ABCD において、辺 BD の中点を M 、辺 CD の中点を N とする。また、辺 AD 上に点 L を定め、 DL =xとする。このとき、$\triangle LMN$の面積が$\triangle ABC$の面積の$dfrac{1}{3}$になるのは$x=\dfrac{\fbox{ケ}}{\fbox{コ}}+\dfrac{\sqrt{\fbox{サシ}}}{ス}$のときである。
2023慶應義塾大学商学部過去問
正方形と2つの正三角形

気付けば一瞬!!半円と円 解説した後に気付いてしまった。。。

福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径

単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。
2023慶應義塾大学経済学部過去問
この動画を見る
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。
2023慶應義塾大学経済学部過去問
🌈🌈🌈

福田の数学〜よくある図形問題ですが微分で困ったことに〜明治大学2023年理工学部第3問〜三角比と最大

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P を$cos\angle PBA=\dfrac{\sqrt{3}}{3}$となるようにとる。このとき、 BP =$\fbox{か}$である。線分 AB 上に A, B とは異なる点 Q をとり、$x= AQ ( 0 くxく 2 )$とする。 PQ をxの式で表すと PQ =$\fbox{き}$となる。また、三角形 BPQ の面積 s をxの式で表すと s =$\fbox{く}$である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=$\fbox{け}$である。また、$0 くxく2$の範囲でxを動かすとき、Tが最大になるのは$x=\fbox{こ}$のときだけである。
2023明治大学理工学部過去問
この動画を見る
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P を$cos\angle PBA=\dfrac{\sqrt{3}}{3}$となるようにとる。このとき、 BP =$\fbox{か}$である。線分 AB 上に A, B とは異なる点 Q をとり、$x= AQ ( 0 くxく 2 )$とする。 PQ をxの式で表すと PQ =$\fbox{き}$となる。また、三角形 BPQ の面積 s をxの式で表すと s =$\fbox{く}$である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=$\fbox{け}$である。また、$0 くxく2$の範囲でxを動かすとき、Tが最大になるのは$x=\fbox{こ}$のときだけである。
2023明治大学理工学部過去問
5つの正方形

正方形と円

数学どうにかしたい人へ

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
tan7. 5°の華麗な求め方

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
\frac{1}{\tan\frac{\pi}{24}}の値
\end{eqnarray}
$
この動画を見る
$
\begin{eqnarray}
\frac{1}{\tan\frac{\pi}{24}}の値
\end{eqnarray}
$