三角形の辺の比(内分・外分・二等分線)
三角形の辺の比(内分・外分・二等分線)
福田の数学〜神戸大学2025理系第4問〜空間ベクトルと三角形の面積の最小

単元:
#数A#大学入試過去問(数学)#図形の性質#空間ベクトル#三角形の辺の比(内分・外分・二等分線)#空間ベクトル#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$s,t$を実数とする。座標空間に$3$点
$A(-4,-1,0),B(-3,0,-1),P(s,t,-2s+t-1)$がある。
以下の問いに答えよ。
(1)$3$点$A,B,P$は一直線上にないことを示せ。
(2)点$P$から直線$AB$に下ろした垂線を$PH$とする。
点$H$の座標を$s$を用いて表せ。
(3)$s,t$が変化するとき、
三角形$ABP$の面積の最小値を求めよ。
$2025$年神戸大学理系過去問題
この動画を見る
$\boxed{4}$
$s,t$を実数とする。座標空間に$3$点
$A(-4,-1,0),B(-3,0,-1),P(s,t,-2s+t-1)$がある。
以下の問いに答えよ。
(1)$3$点$A,B,P$は一直線上にないことを示せ。
(2)点$P$から直線$AB$に下ろした垂線を$PH$とする。
点$H$の座標を$s$を用いて表せ。
(3)$s,t$が変化するとき、
三角形$ABP$の面積の最小値を求めよ。
$2025$年神戸大学理系過去問題
福田のおもしろ数学531〜三角形に関する命題とその逆

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
左の三角形$ABC$において
$\angle A=3\angle B$
$\Rightarrow (a^2-b^2)(a-b)=bc^2$
が成り立つことを示せ。
また、逆は成り立つか?
図は動画内参照
この動画を見る
左の三角形$ABC$において
$\angle A=3\angle B$
$\Rightarrow (a^2-b^2)(a-b)=bc^2$
が成り立つことを示せ。
また、逆は成り立つか?
図は動画内参照
福田の数学〜慶應義塾大学2025経済学部第1問(1)〜三角形の面積と線分の長さ

単元:
#数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。
座標平面上の$4$点$O,A,B,C$を、
$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$
$C(5\cos3\alpha,5\sin3\alpha)$とする。
(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、
辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。
(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。
(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$
$2025$年慶應義塾大学経済学部過去問題
この動画を見る
$\boxed{1}$
(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。
座標平面上の$4$点$O,A,B,C$を、
$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$
$C(5\cos3\alpha,5\sin3\alpha)$とする。
(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、
辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。
(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。
(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$
$2025$年慶應義塾大学経済学部過去問題
福田のおもしろ数学485〜三角形の内部の点から下ろした垂線の長さと最小値

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\triangle ABC$の内部の点$P$から辺$BC,CA,AB$へ
下ろした垂線の足をそれぞれ$D,E,F$とする。
$\dfrac{BC}{PD}+\dfrac{CA}{PE}+\dfrac{AB}{PF}$
を最小とする$P$を決定せよ。
図は動画内参照
この動画を見る
$\triangle ABC$の内部の点$P$から辺$BC,CA,AB$へ
下ろした垂線の足をそれぞれ$D,E,F$とする。
$\dfrac{BC}{PD}+\dfrac{CA}{PE}+\dfrac{AB}{PF}$
を最小とする$P$を決定せよ。
図は動画内参照
福田のおもしろ数学435〜正三角形の内部の点の位置から面積を求める

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正三角形$ABC$の内部に
$AP=3,BP=4,CP=5$を満たす点$P$がある。
この正三角形$ABC$の面積を求めよ。
図は動画内参照
この動画を見る
正三角形$ABC$の内部に
$AP=3,BP=4,CP=5$を満たす点$P$がある。
この正三角形$ABC$の面積を求めよ。
図は動画内参照
福田のおもしろ数学424〜直角二等辺三角形の斜辺を1:2:√3に内分する点がAと作る角が45°になる証明

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
直角二等辺三角形$ABC$で
斜辺$BC$を$1:2:\sqrt3$に
分ける点を順に$D,E$とする。
$\angle DAE=45°$
であることを証明せよ。
図は動画内参照
この動画を見る
直角二等辺三角形$ABC$で
斜辺$BC$を$1:2:\sqrt3$に
分ける点を順に$D,E$とする。
$\angle DAE=45°$
であることを証明せよ。
図は動画内参照
角の二度分線

福田のおもしろ数学330〜三角形の成立条件と条件を満たす三角形の個数

単元:
#数A#図形の性質#整数の性質#三角形の辺の比(内分・外分・二等分線)#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
自然数$n\geqq 3$に対して$f(n)$を各辺の長さが整数かつ周の長さが$n$である三角形の個数で定義する。
(例えば$f(3)=1,f(4)=0,f(7)=2$である)
$f(1999)\geq f(1966),f(2000)=f(1997)$を示せ。
この動画を見る
自然数$n\geqq 3$に対して$f(n)$を各辺の長さが整数かつ周の長さが$n$である三角形の個数で定義する。
(例えば$f(3)=1,f(4)=0,f(7)=2$である)
$f(1999)\geq f(1966),f(2000)=f(1997)$を示せ。
福田のおもしろ数学312〜三角形の内角と辺の長さに成り立つ不等式の証明

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\triangle $ABCにおいて$60 \leqq \frac{aA+bB+cC}{a+b+c} \lt 90$が成り立つことを証明してください。ただし、A,B,Cは度数法で表されているものとする。
この動画を見る
$\triangle $ABCにおいて$60 \leqq \frac{aA+bB+cC}{a+b+c} \lt 90$が成り立つことを証明してください。ただし、A,B,Cは度数法で表されているものとする。
15°75°90°の直角三角形

直角三角形の中に直角

単元:
#数学(中学生)#中1数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
次の図のxを求めよ。
(図は動画参照)
この動画を見る
次の図のxを求めよ。
(図は動画参照)
福田の数学〜千葉大学2024年文系第1問〜三角形の成立条件と対数

単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#指数関数と対数関数#対数関数#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(1) 3辺の長さが$2,5,a$である三角形が存在するような、$a$の値の範囲を求めよ。
(2) 3辺の長さが$\log_{10}(5x),\log_{10}(x+10),\log_{10}3$である三角形が存在するような、$x$の値の範囲を求めよ。
(3) ある二等辺三角形の3辺の長さが$\log_{10}(5x),\log_{10}(x+10),\log_{10}3$であるとき、$x$の値を求めよ。
この動画を見る
(1) 3辺の長さが$2,5,a$である三角形が存在するような、$a$の値の範囲を求めよ。
(2) 3辺の長さが$\log_{10}(5x),\log_{10}(x+10),\log_{10}3$である三角形が存在するような、$x$の値の範囲を求めよ。
(3) ある二等辺三角形の3辺の長さが$\log_{10}(5x),\log_{10}(x+10),\log_{10}3$であるとき、$x$の値を求めよ。
点Pはどこ?

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△PAB=△PAD=△PCDとなる点Pはどこ?
*図は動画内参照
この動画を見る
△PAB=△PAD=△PCDとなる点Pはどこ?
*図は動画内参照
内角の二等分線と〇〇 2024城北高校

これ一瞬で解けるの知ってる?

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
座標上の三角形の面積を一瞬で求める裏技に関して解説していきます。
この動画を見る
座標上の三角形の面積を一瞬で求める裏技に関して解説していきます。
福田のおもしろ数学027〜1分でできたらマジ天才〜2直線のなす角の最大

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#方べきの定理と2つの円の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の図で、xの辺の長さを求めよ
図は動画内参照
この動画を見る
次の図で、xの辺の長さを求めよ
図は動画内参照
福田のおもしろ数学025〜10秒でできたら天才〜円に内接する二等辺三角形と線分の長さ

単元:
#数学(中学生)#中3数学#数A#図形の性質#円#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
小学生でも解ける!?
xを求めよ
図は動画内参照
この動画を見る
小学生でも解ける!?
xを求めよ
図は動画内参照
これ知ってた?

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
角度の二等分線の解き方の裏技動画に関して解説していきます。
この動画を見る
角度の二等分線の解き方の裏技動画に関して解説していきます。
福田のおもしろ数学024〜10秒でできたら天才〜三角形の中の線分の長さ

単元:
#数学(中学生)#中3数学#数A#図形の性質#相似な図形#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
小学生でも解ける!?
xを求めよ
図は動画内参照
この動画を見る
小学生でも解ける!?
xを求めよ
図は動画内参照
福田のおもしろ数学023〜10秒でできたら天才〜三角形と平行線と角の二等分線

単元:
#数A#図形の性質#平行と合同#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$BC /\!/ DE$ 、 CD は $\angle ACB$ の二等分線、 CF は $\angle ACG$ の二等分線、 CE=3 のとき、 DF=?
この動画を見る
$BC /\!/ DE$ 、 CD は $\angle ACB$ の二等分線、 CF は $\angle ACG$ の二等分線、 CE=3 のとき、 DF=?
福田のおもしろ数学019〜ジュニア数学オリンピック本選問題〜直角三角形の斜辺の長さを求める

単元:
#数学(中学生)#中3数学#数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#三平方の定理#三角形の辺の比(内分・外分・二等分線)#数学オリンピック#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
直角三角形の一辺の長さが 18 で、すべての辺の長さが整数のとき、斜辺の長さは?
ジュニア数学オリンピック過去問
この動画を見る
直角三角形の一辺の長さが 18 で、すべての辺の長さが整数のとき、斜辺の長さは?
ジュニア数学オリンピック過去問
2024年共通テスト解答速報〜数学ⅠA第1問(2)〜福田の入試問題解説

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角形の辺の比(内分・外分・二等分線)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
図 1 のように、電柱の影の先端は坂の斜面(以下、坂)にあるとする。また、坂には傾斜を表す道路標識が設置されていてをそこには 7 %と表示されているとする。電柱の太さと影の幅は無視して考えるものとする。また。地面と坂は平面であるとし、地面と坂が交わってできる直線を$\ell$とする。電柱の先端を点 A とし、根もとを点 B とする。電柱の影について。地面にある部分を線分 BC とし、坂にある部分を線分 CD とする。線分BC、CDがそれぞれ$\ell$と重直であるとき、電柱の影は坂に向かってまっすぐにのびているということにする。
※図は動画内参照
電柱の影が坂に向かってまっすぐにのびているとする。このとき、 4 点 A.B. C. D を通る平面は$\ell$と重直である。その平面において、図 2 のように、直線 ADと直線BCの交点を P とすると、太陽高度とは $\angle APB$の大きさのことである。
※図は動画内参照
道路標識の 7 %という表示は、この坂をのぼったとき、100m の水平距離に対して 7m の割合で高くなることを示している。nを1以上 9 以下の整数とするとき、坂の傾斜角$\angle DCP$の大きさについて
$n° \lt \angle DCP \lt n°+1°$
を満たすnの値は シ である。
以下では、$\angle DCP$の大きさは、ちょうどシ°であるとする。
ある日、電柱の影が坂に向かってまっすぐにのびていたとき、影の長さを調べたところBC= 7 m、 CD= 4 m であり、太陽高度は $angle\ APB$=45°であった。点 D から直線 AB に重直な直線を引き、直物 AB との交点を E とするとき
BE=ス×セm
であり
DE=(ソ+アタ×チ)m
である。よって電柱の高さは、小数点第2位で四捨五入するとソmであることがわかる。
別の日、電柱の影が坂に向かってまっすぐにのびていたときの太陽高度は刻= 42°であった。電住の高さがわかったので、前回調べた日からの影の長さの変化を知ることができる。電柱の影について、坂にある第分の長さは
$\dfrac{AB-テ×ト}{ナ+ニ×ト}m$
である。AB=ツmとして、これを計算することにより、この日の電柱の陰について、坂にある部分の長さは、前回調べた4mより約1.2mだけ長いことが分かる。
2024共通テスト過去問
この動画を見る
図 1 のように、電柱の影の先端は坂の斜面(以下、坂)にあるとする。また、坂には傾斜を表す道路標識が設置されていてをそこには 7 %と表示されているとする。電柱の太さと影の幅は無視して考えるものとする。また。地面と坂は平面であるとし、地面と坂が交わってできる直線を$\ell$とする。電柱の先端を点 A とし、根もとを点 B とする。電柱の影について。地面にある部分を線分 BC とし、坂にある部分を線分 CD とする。線分BC、CDがそれぞれ$\ell$と重直であるとき、電柱の影は坂に向かってまっすぐにのびているということにする。
※図は動画内参照
電柱の影が坂に向かってまっすぐにのびているとする。このとき、 4 点 A.B. C. D を通る平面は$\ell$と重直である。その平面において、図 2 のように、直線 ADと直線BCの交点を P とすると、太陽高度とは $\angle APB$の大きさのことである。
※図は動画内参照
道路標識の 7 %という表示は、この坂をのぼったとき、100m の水平距離に対して 7m の割合で高くなることを示している。nを1以上 9 以下の整数とするとき、坂の傾斜角$\angle DCP$の大きさについて
$n° \lt \angle DCP \lt n°+1°$
を満たすnの値は シ である。
以下では、$\angle DCP$の大きさは、ちょうどシ°であるとする。
ある日、電柱の影が坂に向かってまっすぐにのびていたとき、影の長さを調べたところBC= 7 m、 CD= 4 m であり、太陽高度は $angle\ APB$=45°であった。点 D から直線 AB に重直な直線を引き、直物 AB との交点を E とするとき
BE=ス×セm
であり
DE=(ソ+アタ×チ)m
である。よって電柱の高さは、小数点第2位で四捨五入するとソmであることがわかる。
別の日、電柱の影が坂に向かってまっすぐにのびていたときの太陽高度は刻= 42°であった。電住の高さがわかったので、前回調べた日からの影の長さの変化を知ることができる。電柱の影について、坂にある第分の長さは
$\dfrac{AB-テ×ト}{ナ+ニ×ト}m$
である。AB=ツmとして、これを計算することにより、この日の電柱の陰について、坂にある部分の長さは、前回調べた4mより約1.2mだけ長いことが分かる。
2024共通テスト過去問
正五角形と正三角形 京都府

正方形の面積2024

気付けば一瞬!!角の和

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle a +\angle b +\angle c = ?$
*図は動画内参照
この動画を見る
$\angle a +\angle b +\angle c = ?$
*図は動画内参照
垂直二等分線の交点が一点で交わるのはなぜ?

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
各辺の垂直二等分線の交点が1点で交わるのはなぜ?
*図は動画内参照
この動画を見る
各辺の垂直二等分線の交点が1点で交わるのはなぜ?
*図は動画内参照
15度15度150度の二等辺三角形 明大明治

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABC=?
*図は動画内参照
明治大学付属明治高等学校
この動画を見る
△ABC=?
*図は動画内参照
明治大学付属明治高等学校
22.5°

22.5°

外角の二等分線と平行 奈良学園

