複素数と方程式 - 質問解決D.B.(データベース) - Page 6

複素数と方程式

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

立命館(文系)複素数の計算

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#大学入試過去問(英語)#立命館大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^6=1$の4つの虚数解のうちの1つを$\alpha$とする.
$(1-\alpha)(1-\alpha^3)(1-\alpha^5)$の値は$\Box$か$\Box$か.

立命館大(文系)過去問
この動画を見る 

早稲田(教育)見た目は数2か数3 中身は中学入試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=a_2=1,a_{n+2}=a_{n+1}+a_n,\displaystyle \sum_{n=1}^{2019} ia_n,$
$i$は虚数単位である.これを解け.

早稲田大(教育)過去問
この動画を見る 

2次方程式の因数分解や解の公式が不要な新しい解き方の証明

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の因数分解や解の公式が不要な新しい解き方の証明
この動画を見る 

福田の数学〜九州大学2022年文系第3問〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ kを実数とし、整式f(x)を\hspace{180pt}\\
f(x)=x^4+6x^3-kx^2+2kx-64\\
で定める。方程式f(x)=0が虚数解をもつとき、以下の問いに答えよ。\\
(1)f(x)はx-2で割り切れることを示せ。\\
(2)方程式f(x)=0は負の実数解をもつことを示せ。\\
(3)方程式f(x)=0の全ての実数解が整数であり、\\
すべての虚数解の実部と虚部が共に整数であるとする。\\
このようなkを全て求めよ。
\end{eqnarray}

2022九州大学文系過去問
この動画を見る 

福田の数学〜九州大学2022年文系第1問〜絶対値の付いた放物線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ aを-3 \lt a \lt 13を満たす実数とし、次の曲線Cと直線lが接しているとする。\\
C:y=|x^2+(3-a)x-3a|, l:y=-x+13\\
以下の問いに答えよ。\\
(1)aの値を求めよ。\\
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。
\end{eqnarray}

2022九州大学文系過去問
この動画を見る 

問題の背景を探る ハンガリーJr数学Olympic

アイキャッチ画像
単元: #複素数平面#円#三角関数#複素数#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=81$
$x^2+y^2=121$
$ax+by=99$
$ay-bx=?$
これを解け.

ハンガリーjr数学オリンピック過去問
この動画を見る 

整式の割り算!頻出です【山梨大学 入試問題】【数学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$x^{2014}$を整式$x^4+x^3+x^2+x+1$で割った余りを求めよ。

山梨大過去問
この動画を見る 

東京電機大 複素数のべき乗

アイキャッチ画像
単元: #複素数と方程式#複素数#指数関数#数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+2i)^n=x_n+y_ni$
(1)$x^2_n+y^2_n$を求めよ.
(2)$x_{n+2}$を$x_{n+1}$と$x_n$で表せ.
(3)$x_n$と$y_n$の最大公約数を求めよ.

東京電機大過去問
この動画を見る 

中学生も解ける4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^4-5x^2+4 = 0$を解け
この動画を見る 

【因数定理】コツがあるんです【数学 解説動画】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の式を因数分解せよ。
(1)$x^3+4x^2-6x-27$
(2)$x^3+6x^2-6x+7$
この動画を見る 

きっと良問

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
P(x)はxの3次式でP(11)=11,P(12)=12,P(13)=14,P(14)=15である.
P(15)のときはいくつであるか求めよ.
この動画を見る 

中国Jr 数学Olympic あっと驚く解法も

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5=1,x \neq 1$とするとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x^6}+\dfrac{x^4}{1+x^8}$の値を求めよ.

中国jr数学オリンピック過去問
この動画を見る 

簡単な問題

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.

$ x^3+y^3+z^3$の値をa,bで表せ.
この動画を見る 

2分で解ける問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2+\dfrac{1}{x^2}=\sqrt2 $のとき,$ x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
この動画を見る 

方程式を解く。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(123.4-12.34) \div x =1.234$
この動画を見る 

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とする。                          \\
(1)整式x^3を2次式(x-a)^2で割った時の余りを求めよ。         \ \ \\
(2)実数を係数とする2次式f(x)=x^2+\alpha x+\betaで整式x^3を割った時の余りが\\
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

3乗根の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$ x^3+1=2\sqrt[3]{2x-1}$
この動画を見る 

3乗根を外すだけ

アイキャッチ画像
単元: #複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
3乗根を外せ.
$ \sqrt[3]{\dfrac{10-7\sqrt2}{10+7\sqrt2}}$
この動画を見る 

うまい方法

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3+2x^2+3x+4=0$の3つの解を$ \alpha,\beta,\delta $とする.
$(\alpha^4-1)(\beta^4-1)(\delta^4-1)$の値を求めよ.
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第1問〜剰余定理と高次不等式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ kを実数の定数とし、\\
f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1\\
とする。\\
(1)f(k-1)の値を求めよ。\\
(2)|k|\lt 2のとき、不等式f(x) \geqq 0を解け。
\end{eqnarray}

2022北海道大学文系過去問
この動画を見る 

ただの対数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\log_2 x+\log_3 x=1$
この動画を見る 

2022九州大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.

2022九州大過去問
この動画を見る 

中学生もわかる!と思う!指数の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{x+1}+2^{x-1} = 1280$
x=?
この動画を見る 

2022早稲田大(社)整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式P(x)をx-1で割ると1あまり,$ (x+1)^2 $で割ると3x+2あまる.
P(x)を次の式で割ったあまりは?
(1)$ x+1$ (2)$(x+1)(x-1)$ (3)$(x-1)(x+1)^2$

2022早稲田大過去問
この動画を見る 

解けるように作られた問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3-x-1=0 $の実数解を$ \alpha $とするとき,
$ \sqrt[3]{3\alpha^2-4\alpha}+\sqrt[3]{3\alpha^2+4\alpha+2}$の値を求めよ.
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$8^x=\frac{2^{56}-4^{26}}{30}$のときx=?
この動画を見る 

連立2元9次方程式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 曲線C:y=\cos^3x (0 \leqq x \leqq \frac{\pi}{2}),x軸およびy軸で囲まれる図形の面s系をS\\
とする。0 \lt t \lt \frac{\pi}{2}とし、C上の点Q(t,\cos^3t)と原点O,およびP(t,o),R(0,\cos^3t)\\
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。\\
(1)Sを求めよ。\\
(2)f(t)は最大値をただ一つのtでとることを示せ。そのときのtを\alphaとすると、\\
f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha} であることを示せ。\\
(3)\frac{f(\alpha)}{S} \lt \frac{9}{16} を示せ。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 

2022北海道大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-$
$k+1 $
(1)$ f(k-1)$の値を求めよ.
(2)$ \vert k \vert \lt 2$のとき,不等式 $ f(n)\geqq 0$を解け.

2022北海道大過去問
この動画を見る 
PAGE TOP