図形と方程式 - 質問解決D.B.(データベース) - Page 4

図形と方程式

福田の1.5倍速演習〜合格する重要問題049〜早稲田大学2019年度商学部第2問〜折れ線の長さの最小値問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#微分法と積分法#点と直線#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上において、放物線$y=x^2$上の点をP、円$(x-3)^2+(y-1)^2=1$上の
点をQ、直線$y=x-4$上の点をRとする。次の設問に答えよ。

(1)QR の最小値を求めよ。
(2)PR+QR の最小値を求めよ。

2019早稲田大学商学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題047〜慶應義塾大学2019年度総合政策学部第3問〜立方体の内部を面に接しながら動く球の通過できない領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球$S(r \gt 0)$が
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは
$(\textrm{i})0 \lt r \lt \frac{\boxed{ア}}{\boxed{イ}}$のとき                    
$V=\left(\boxed{ウエオ}+\frac{\boxed{カキ}}{\boxed{クケ}}\pi\right)r^3+$
$(\boxed{コサシ}+\boxed{スセ}\pi)r^2$
$+\boxed{ソタチ}r+\boxed{ツテ}$

$(\textrm{ii})\frac{\boxed{ア}}{\boxed{イ}} \leqq r \leqq 1$のとき                    
$V=\left(\boxed{トナニ}+\frac{\boxed{ヌネ}}{\boxed{ノハ}}\pi\right)r^3+$
$(\boxed{ヒフヘ}+\boxed{ホマ}\pi)r^2$

2019慶應義塾大学総合政策学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題041〜上智大学2019年度TEAP文系第3問〜長方形の紙を折り返す問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$AB=2,BC=3$の長方形ABCDの形の紙がある。DE=aとなる辺DC上の
点Eを考える。AがEと重なるように紙を折るとき、折り目となる線と辺AD,
辺BCとの交点をそれぞれP,Qとする。

(1)aを用いて表すと、$AP=\frac{\boxed{二}}{\boxed{ヌ}}a^2+\frac{\boxed{ネ}}{\boxed{ノ}}$である.
(2)aを用いて表すと、$BQ=\frac{\boxed{ハ}}{\boxed{ヒ}}a^2+
\frac{\boxed{フ}}{\boxed{ヘ}}a+\frac{\boxed{ホ}}{\boxed{マ}}$である。
(3)aを用いて表すと、$PQ=\frac{\boxed{ミ}}{\boxed{ム}}\sqrt{a^2+\boxed{メ}}$である。
(4)四角形ABQPの面積はaを用いて表すと、$\frac{\boxed{モ}}{\boxed{ヤ}}a^2+\frac{\boxed{ユ}}{\boxed{ヨ}}a+\boxed{ラ}$
であり、その最小値は$\frac{\boxed{リ}}{\boxed{ル}}$である。

2019上智大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題030〜東京大学2016年度文系第1問〜鋭角三角形となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の3点$P(x,y), Q(-x,-y), R(1,0)$が鋭角三角形をなすための$(x,y)$
についての条件を求めよ。また、その条件を満たす点P(x,y)の範囲を図示せよ。

2016東京大学文系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題025〜大阪大学2016年度理系数学第3問〜回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点Oを中心とする半径rの円と放物線$y=\sqrt2(x-1)^2$
は、ただ1つの共有点(a,b)をもつとする。
(1)a,b,rの値をそれぞれ求めよ。
(2)連立不等式
$a \leqq x \leqq 1, 0 \leqq y \leqq \sqrt2(x-1)^2, x^2+y^2 \geqq r^2$
の表す領域をx軸のまわりに1回転してできる回転体の体積を求めよ。

2016大阪大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題024〜名古屋大学2016年度理系数学第1問〜垂直条件と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
曲線$y=x^2$上に2点$A(-2,4),B(b,b^2)$をとる。ただし、$b \gt -2$とする。
このとき、次の条件を満たすbの範囲を求めよ。
条件:$y=x^2$上の点$T(t,t^2)(-2 \lt t \lt b)$で、$\angle ATB$が直角になるものが
存在する。

2016名古屋大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題012〜京都大学2015年度文系数学第1問〜折れ線と交わらない条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次関数とグラフ#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
直線$y=px+q$が、$y=x^2-x$のグラフとは交わるが、$y=|x|+|x-1|+1$
のグラフとは交わらないような(p,q)の範囲を図示し、その面積を求めよ。

2015京都大学文系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題008〜神戸大学文系数学第1問〜対称式と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#図形と方程式#解と判別式・解と係数の関係#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
s,tを$s \lt t$をみたす実数とする。座標平面上の3点$A(1,2),B(s,s^2),C(t,t^2)$が一直線上にあるとする。以下の問いに答えよ。
(1)sとtの関係式を求めよ。
(2)線分BCの中点をM(u,v)とする。uとvの間の関係式を求めよ。
(3)s,tが変化するとき、vの最小値と、その時のu,s,tの値を求めよ。

神戸大学文系過去問
この動画を見る 

放物線と直線

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#図形と方程式#点と直線#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b}=?$
*図は動画内参照

ラ・サール高等学校
この動画を見る 

福田の1.5倍速演習〜合格する重要問題001〜東京大学2015年理系問題1〜放物線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
問題文全文(内容文):
正の実数aに対して、座標平面上で次の放物線を考える。
$C:\ y=ax^2+\frac{1-4a^2}{4a}$aが正の実数全体を動くとき、Cの通過する領域を図示せよ。

2015東京大学理系過去問
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(3)〜2つの円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)座標平面上の3点(2,3),(-5,10),(-2,1)を通る円をC_1とする。この
とき、C_1の中心は$(-\boxed{ナ}, \boxed{ニ})$、半径は$\boxed{ヌ}$である。
$C_1$と点(2,3)で外接し、x軸とも接している円を$C_2$とする。このとき、
$C_2$の中心は$(\frac{\boxed{ネ}}{\boxed{ノ}},\frac{\boxed{ハヒ}}{\boxed{フ}})、半径は\frac{\boxed{ヘホ}}{\boxed{マ}}$である。

2022東京理科大学理工学部過去問
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)角θに関する方程式
$\cos 4θ=\cos θ(0\leqq θ\leqq \pi)$
について考える。①を満たすθは小さい方から順に
$θ=0,\frac{\boxed{キ}}{\boxed{ク}}\pi,\frac{\boxed{ケ}}{\boxed{コ}}\pi,\frac{\boxed{サ}}{\boxed{シ}}\pi$
の4つである。一方、θが①を満たすとき、$t=\cos θ$とおくとtは
$\boxed{ス}t^4 - \boxed{セ}t^2+\boxed{ソ}=t$
を満たす。$t=1,\cos \frac{\boxed{ケ}}{\boxed{コ}}\pi$は②の解なので、2次方程式
$\boxed{タ}t^2+\boxed{チ}t-1=0$
は$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi,\cos \frac{\boxed{サ}}{\boxed{シ}}\pi$を解にもつ。これより、
$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi=\frac{\sqrt{\boxed{ツ}}-\boxed{テ}}{\boxed{ト}},\cos \frac{\boxed{サ}}{\boxed{シ}}\pi=-\frac{\sqrt{\boxed{ツ}}+\boxed{テ}}{\boxed{ト}}$であることが分かる。
この動画を見る 

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。
$(\textrm{a})\angle BAC \lt \angle ABC$を満たす場合、点Cは第$\boxed{ア}$象限に存在する。
$(\textrm{b})\angle ABC \lt \angle ACB$を満たす場合、点Cは$\boxed{イ}$の$\boxed{ウ}$に存在する。
$(\textrm{c})\angle ACB \lt \frac{\pi}{2}$を満たす場合、点Cは$\boxed{エ}$の$\boxed{オ}$に存在する。
$(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}$を満たす点Cが存在する領域(境界を含む)
の面積は$\frac{\boxed{カ}}{\boxed{キク }}\pi-\frac{\sqrt{\boxed{ケ }}}{\boxed{コ }}$である。
$\boxed{イ},\boxed{エ}$の解答群
①点Aを中心とし点Bを通る円
②点Bを中心とし点Aを通る円
③線分ABを直径とする円
④離心率が0.5で2点O,Aを焦点とする楕円
⑤離心率が0.5で2点O,Bを焦点とする楕円
⑥離心率が0.5で2点A,Bを焦点とする楕円
⑦線分ABを一辺にもち、重心のy座標が正である正三角形
⑧線分ABを一辺にもち、重心のy座標が正である正方形

$\boxed{ウ},\boxed{オ}$の解答群
①内部 ②周上 ③外部 ④重心

(2)座標空間内の4点$A(-1,0,0),B(1,0,0),C(s,t,0),D$を原点とし、
$\angle BAC \lt \angle ABC \lt \angle ACB$
を満たす四面体を考える。$t \gt 0$であり、点Dのz座標は正であるとする。
$(\textrm{a})\angle ADC=\frac{\pi}{2}$を満たす場合、点Dは$\boxed{サ }$に存在する。
$(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}$を満たす場合、
点Dのx座標はsであり、点Dは$(s,\boxed{シ},0)$を中心とする
半径$\boxed{ス}$の円周上にある。
$(\textrm{c})$以下では$t=\frac{4}{3}$とする。設問(1)の結果から、点Cのx座標sは
$\boxed{セ} \lt s \lt -\boxed{ソ}+\frac{\boxed{タ}\sqrt{\boxed{チ}}}{\boxed{ツ}}$の範囲をとりうる。この範囲でsが変化
するとき、$\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}$を満たす四面体ABCDの体積は
$s=\frac{\boxed{テ}}{\boxed{エ}}$のとき最大値$\frac{\boxed{ナ}}{\boxed{二ヌ }}$をとる。

2022杏林大学医学部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第4問〜線分の中点の軌跡と直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に円C$:x^2+y^2=4$と点$P(6,\ 0)$がある。円C上を点$A(2a,\ 2b)$が
動くとき、線分APの中点をMとし、線分APの垂直二等分線をlとする。
(1)点Mの軌跡の方程式を求め、その軌跡を図示せよ。
(2)直線lの方程式をa,\ bを用いて表せ。
(3)直線lが通過する領域を表す不等式を求め、その領域を図示せよ。

2022上智大理工学部過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
一辺の長さが1である立方体QACB-CFGEを考える。
$\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } $
$= \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },$ とおき、実数s,tに対し
点P,Qを
$\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+$
$s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }$
を満たす点とする。
(1)点Pは直線$\boxed{あ}$上にあり、点Qは直線$\boxed{い}$上にある。
(2)直線$\boxed{あ}$と直線$\boxed{い}$とは$\boxed{う }$

$\boxed{う}$の選択肢
$(\textrm{a})$一致する $(\textrm{b})$平行である $(\textrm{c})$直交する $(\textrm{d})$交わるが直交しない。
$(\textrm{e})$ねじれの位置にあって垂直である $(\textrm{f})$ねじれの位置にあって垂直でない。

(3)線分PQの長さは、$s=\boxed{え},\ t=\boxed{お}$のとき最小値をとり、
このとき$PQ^2=\boxed{か}$である。

$\boxed{え}\ \boxed{お}\ \boxed{か}$の選択肢
$(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}$
$(\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1$
$(\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3$

(4)$s,t$が$0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1$の範囲を動くとき、線分PQの中点Mの動く領域は
$\boxed{き}$であり、その面積は$\frac{\sqrt{\boxed{オ}}}{\boxed{カ}}$である。

$\boxed{き}$の選択肢
$(\textrm{a})$正三角形 $(\textrm{b})$直角二等辺三角形 $(\textrm{c})$直角二等辺三角形でない直角三角形
$(\textrm{d})$直角二等辺三角形でない直角三角形でもない三角形 $(\textrm{e})$正方形 $(\textrm{f})$正方形でない長方形
$(\textrm{g})$長方形でない平行四辺形 $(\textrm{h})$並行四辺形でない四角形$(\textrm{i})$五角形$(\textrm{i})$六角形
(5)$s,t$が$0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1$の範囲を動くとき、線分PQが通過する領域の体積は
$\frac{\boxed{キ}}{\boxed{ク}}$である。

2022上智大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(3)〜指数不等式と領域における最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)正の数の組$(x,\ y)$が
$\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}$
を満たすとき$z=xy$は$(x,\ y)=(a,\ b)$で最小値をとる。ここで、
$\log_{10}a=\frac{\boxed{ヤ}}{\boxed{ユ}},\ \log_{10}b=\frac{\boxed{ヨ}}{\boxed{ワ}}$
である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第4問(2)〜円が直線から切り取る線分の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$t \gt 0$とし、xy平面上の直線
$l:y=-x+t$
と領域
$B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2$
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは
$t=\boxed{ム}$のときに最大値$\boxed{メ}\sqrt{\boxed{モ}}$をとる。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(3)〜サイコロの目による円と直線の位置関係の確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(3)円$(x-3)^2+(y-3)^2=5$とlが共有点を持たない確率は$\frac{\boxed{サ}}{\boxed{シ}}$である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(2)点(2,\ 4)がDに含まれる確率は
$\frac{\boxed{キ}}{\boxed{ク}}$
点(2,\ 3)がDに含まれる確率は$\frac{\boxed{ケ}}{\boxed{コ}}$である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第5問〜切り取られる弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
xy平面上に、円$C:(x-5)^2+y^2=5$と直線$l:y=mx$がある。
(1)Cとlが共有点を持つようなmの値の範囲を求めよ。
mの値が(1)で求めた範囲にあるとき、Cとlの2つの共有点をP,Qとし、
線分PQの中点をMとする。ただし、lがCに接するときはP=Q=Mとする。
(2)点Mの座標をmを用いて表せ。
(3)mが(1)で求めた範囲を動くときの点Mの軌跡を求め、図示せよ。
(4)原点からCに引いた2本の接線と(3)で求めた点Mの軌跡で囲まれた図形を
Dとする。図形Dをx軸の周りに1回転してできる回転体の体積Vを求めよ。

2022青山学院大学理工学部過去問
この動画を見る 

福田の数学〜立教大学2022年経済学部第3問〜放物線と円と直線で囲まれた面積

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上の放物線$C:y=x^2$とC上の点P$(\frac{\sqrt3}{2}, \ \frac{3}{4})$がある。
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。
(1)mの方程式を$y=px+q$とするとき、定数p,qの値を求めよ。
(2)Qの座標を$(a,\ 0)$とするとき、aの値を求めよ。
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。
$x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2$
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域
の面積S_2を求めよ。
$0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2$

2022立教学部経済学部過去問
この動画を見る 

福田の数学〜立教大学2022年理学部第3問〜接線法線と囲まれた部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$t$を正の実数とする。座標平面上に放物線$C_1:y=x^2$とその上の点$P(t,\ t^2)$がある。
Pにおける$C_1$の接線を$l$とし、法線を$m$とする。$l$とx軸との交点をQとする。
Pにおいて$l$に接し、さらにx軸にも接する円で、中心のx座標がt以下であるものを$C_2$
とする。$C_2$の中心をAとし、$C_2$とx軸の接点をBとする。
(1)lの方程式を求めよ。
(2)mの方程式を求めよ。
(3)$\angle BAP=\frac{\pi}{3}$であるとき、tの値を求めよ。
(4)(3)のとき、Aの座標を求めよ。
(5)(3)のとき、四角形ABQPの面積を求めよ。

2022立教大学理学部過去問
この動画を見る 

0.5分で要点が分かる!「二次関数と直線」の動画!~全国入試問題解法 #shorts #数学 #入試問題

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#図形と方程式#点と直線#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
放物線$y=a^2x^2$と直線$y=ax+2$が異なる2点$A,B$で交わっている.
ただし,$a \gt b$とする.
$\triangle OAB$の面積が15となる$a$の値を求めよ.

ノートルダム女学院高校過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、2つの円$C_1,\ C_2$を
$C_1=\left\{(x,y,0)\ | \ x^2+y^2=1\right\},\ C_2=\left\{(0,y,z)\ | \ (y-1)^2+z^2=1\right\}$
とする。次の設問に答えよ。
(1)$C_1$上の2点と$C_2$上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(2)〜対称式と最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(2)実数$x,y$が$x^2+y^2\leqq 3$を満たしているとき、
$x-y-xy$の最大値は$\boxed{\ \ イ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)座標空間内の4点$(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)$を頂点と
する四面体をP、4点$(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)$を頂点
とする四面体をQとする。RをPとQの共通部分とする。Rを平面$z=\frac{1}{3}$で
切ったときの切り口の面積を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(1)〜空間ベクトルと球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)座標空間内に3点A$(2,0,0),\ B(0,4,0),\ C(0,0,8)$をとる。
2つのベクトル$\overrightarrow{ AP }$と$\overrightarrow{ BP }+\overrightarrow{ CP }$の内積が0となるような点$P(x,y,z)$
のうち、$|\overrightarrow{ AP }$|が最大となる点Pの座標を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 

【数Ⅱ】中高一貫校問題集3(数式・関数編)394:図形と式:軌跡と方程式:2直線の交点の軌跡(直交する場合)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
mが実数全体を取って動くとき、x+my-1=0,mx-y+2m=0の交点Pの軌跡を求めよ
この動画を見る 
PAGE TOP