不定積分・定積分
【高校数学】毎日積分70日目~国立大学47都道府県制覇への道~【⑭島根】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
■【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1)$\dfrac{n+5}{n+2}\leqq 2$を示せ。
(2)$\displaystyle \int_0^1 xf(x)dx\leqq \dfrac{2}{3}\displaystyle \int_0^1 f(x)dx^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
この動画を見る
■【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1)$\dfrac{n+5}{n+2}\leqq 2$を示せ。
(2)$\displaystyle \int_0^1 xf(x)dx\leqq \dfrac{2}{3}\displaystyle \int_0^1 f(x)dx^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
この動画を見る
(1)すべての実数xに対して
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$\theta$を、$\dfrac{\pi}{3}\lt \theta \lt \dfrac{\pi}{2}$と$\cos 3\theta=-\dfrac{11}{16}$を同時に満たすものとする。このとき、$\cos\theta$を求めよ。
(3)(2)の$\theta$に対して、定積分$\displaystyle \int_{0}^{\theta}sin^5x dx$を求めよ。
【高知大学 2023】
【短時間でポイントチェック!!】定積分 1/6公式〔現役講師解説、数学〕
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\int_{-1}^2\{(x+2)-x^2\}dx$
この動画を見る
$\int_{-1}^2\{(x+2)-x^2\}dx$
故郷長崎の積分でまさかの大苦戦…!? #shorts #高校数学 #毎日積分
毎日積分~47都道府県制覇への道~ #Shorts #高校数学 #積分
【短時間でポイントチェック!!】定積分の基礎〔現役講師解説、数学〕
毎日積分~積分47都道府県制覇への道~ #Shorts #毎日積分 #高校数学
【短時間でポイントチェック!!】不定積分の基礎〔現役講師解説、数学〕
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①$\int xdx$
②$\int x^2dx$
③$\int 4x^2dx$
④$\int (x^2+x)dx$
⑤$\int 1dx$
この動画を見る
①$\int xdx$
②$\int x^2dx$
③$\int 4x^2dx$
④$\int (x^2+x)dx$
⑤$\int 1dx$
【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】
なぜ定積分で面積が求められるのか? #Shorts #毎日積分 #高校数学
【高校数学】毎日積分37日目【難易度:★★★】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_0^2 \dfrac{2x+1}{\sqrt{x^2+4}}dx$
これを解け.
この動画を見る
$\displaystyle \int_0^2 \dfrac{2x+1}{\sqrt{x^2+4}}dx$
これを解け.
バウムクーヘン積分が便利なのはこんなとき!#Shorts #高校数学 #積分
バウムクーヘン積分って何!? #Shorts #積分 #高校数学
区分求積法とは? #Shorts #高校積分 #毎日積分
遂に難易度★★★★★の積分問題登場!#Shorts #積分 #高校数学
【高校数学】毎日積分32日目【共通テスト直前特別編】【毎日17時投稿】
【高校数学】毎日積分31日目【共通テスト直前特別編】【毎日17時投稿】
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
共通テストでも使える!?面積を求めるときの積分の公式についてまとめました!
この動画を見る
共通テストでも使える!?面積を求めるときの積分の公式についてまとめました!
【共通テストでも使える!?】面積を求める1/ 6公式をメチャクチャ分かりやすく解説!例題もあるよ!
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1/6公式を超絶分かりやすく解説!さらに例題も演習!
次の放物線とx軸で囲まれた図形の面積Sを求めよ。
$y=-x^2+2x+3$
この動画を見る
1/6公式を超絶分かりやすく解説!さらに例題も演習!
次の放物線とx軸で囲まれた図形の面積Sを求めよ。
$y=-x^2+2x+3$
本日から毎日積分動画をアップしていきます!【毎日17時投稿】#shorts
福田の数学〜定積分で表された関数の標準問題〜慶應義塾大学2023年環境情報学部第2問〜定積分で表された関数と共通接線
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
関数f(x)が
$f(x)=-2x^2\displaystyle \int_{0}^{ 1 } f(t) dt-12x+\dfrac{2}{9}\displaystyle \int_{-1}^{ 0 } f(t) dt$
$g(x)=\displaystyle \int_{0}^{ 1 } (3x^2+t)g(t)dt-\dfrac{3}{4}$
を満たしている。このとき
$f(x)=\fbox{ア}x^2-12x+\fbox{イ},g(x)=\fbox{ウ}x^2+\fbox{エ}$
である。またxy平面上のy=f(x)とy=g(x)のグラフの共通接戦は$y=\fbox{オ}x+\dfrac{\fbox{カ}}{\fbox{キ}}$
である。なお、nを0または生の整数としたとき、$x^n$の不定積分は
$\displaystyle \int_{}^{}x^ndx=\dfrac{1}{n+1}x^{n+1}+C$(Cは積分定数)である。
この動画を見る
関数f(x)が
$f(x)=-2x^2\displaystyle \int_{0}^{ 1 } f(t) dt-12x+\dfrac{2}{9}\displaystyle \int_{-1}^{ 0 } f(t) dt$
$g(x)=\displaystyle \int_{0}^{ 1 } (3x^2+t)g(t)dt-\dfrac{3}{4}$
を満たしている。このとき
$f(x)=\fbox{ア}x^2-12x+\fbox{イ},g(x)=\fbox{ウ}x^2+\fbox{エ}$
である。またxy平面上のy=f(x)とy=g(x)のグラフの共通接戦は$y=\fbox{オ}x+\dfrac{\fbox{カ}}{\fbox{キ}}$
である。なお、nを0または生の整数としたとき、$x^n$の不定積分は
$\displaystyle \int_{}^{}x^ndx=\dfrac{1}{n+1}x^{n+1}+C$(Cは積分定数)である。
福田の数学〜計算ミスにはご用心〜慶應義塾大学2023年総合政策学部第2問〜定積分で表された関数
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
実数$t \geq 0$に対して、関数 G(t) を次のように定義する。
$G(t)=\displaystyle \int_{t}^{ t+1 } |3x^2-8x-3|dx$
このとき、
(1)$0 \leqq t \lt \fbox{ア}$のときG(t)=$\fbox{イ}t^2+\fbox{ウ}t+\fbox{エ}$
(2)$\fbox{ア} \leqq t \lt \fbox{オ}$のとき$G(t)=\fbox{カ}t^3+\fbox{キ}t^2+\fbox{ク}t+\fbox{ケ}$
(3)$\fbox{オ} \leqq t$のとき$G(t)=\fbox{コ}t^2+\fbox{サ}t+\fbox{シ}$
である。また、G(t)が最小となるのは、$\dfrac{\fbox{ス}+\sqrt{\fbox{セ}}}{\fbox{ソ}}$のときである。
2023慶應義塾大学総合政策学部過去問
この動画を見る
実数$t \geq 0$に対して、関数 G(t) を次のように定義する。
$G(t)=\displaystyle \int_{t}^{ t+1 } |3x^2-8x-3|dx$
このとき、
(1)$0 \leqq t \lt \fbox{ア}$のときG(t)=$\fbox{イ}t^2+\fbox{ウ}t+\fbox{エ}$
(2)$\fbox{ア} \leqq t \lt \fbox{オ}$のとき$G(t)=\fbox{カ}t^3+\fbox{キ}t^2+\fbox{ク}t+\fbox{ケ}$
(3)$\fbox{オ} \leqq t$のとき$G(t)=\fbox{コ}t^2+\fbox{サ}t+\fbox{シ}$
である。また、G(t)が最小となるのは、$\dfrac{\fbox{ス}+\sqrt{\fbox{セ}}}{\fbox{ソ}}$のときである。
2023慶應義塾大学総合政策学部過去問
【数Ⅱ】微分法と積分法:定積分:積分を含む関数 PRIMEⅡ 531(1)
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数f(x)を求めよ。
$f(x)=6x-\int_{0}^{3}f(t)dt$
この動画を見る
次の等式を満たす関数f(x)を求めよ。
$f(x)=6x-\int_{0}^{3}f(t)dt$
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
大学入試問題#636「ミスなく」 東京電機大学(2020) #不定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東京電機大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$
出典:2020年東京電機大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$
出典:2020年東京電機大学 入試問題
大学入試問題#635「意外と簡単」 公立諏訪東京理科大学 #不定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)$\displaystyle \int e^x\{f'(x)+f(x)\} dx$
(2)$\displaystyle \int e^x \displaystyle \frac{1+\sin\ x}{1+\cos\ x}\ dx$
出典:2023年公立諏訪東京理科大学 入試問題
この動画を見る
(1)$\displaystyle \int e^x\{f'(x)+f(x)\} dx$
(2)$\displaystyle \int e^x \displaystyle \frac{1+\sin\ x}{1+\cos\ x}\ dx$
出典:2023年公立諏訪東京理科大学 入試問題
大学入試問題#634「これは沼るかも」 埼玉大学(2015)定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\cos^{n-1}\theta\sin^{n-1}\theta}{\cos^{2n}\theta+\sin^{2n}\theta}\ d\theta$
出典:2015年埼玉大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\cos^{n-1}\theta\sin^{n-1}\theta}{\cos^{2n}\theta+\sin^{2n}\theta}\ d\theta$
出典:2015年埼玉大学 入試問題
#11 鬼の定積分 By英語orドイツ語シはBかHか さん
単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \sqrt{ \displaystyle \frac{2^x-1}{2^x+1} } dx$
この動画を見る
$\displaystyle \int_{0}^{1} \sqrt{ \displaystyle \frac{2^x-1}{2^x+1} } dx$
大学入試問題#633「計算力勝負」 日本医科大学(2018年) #積分方程式 僚太さんの紹介
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#日本医科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)$:微分可能
$x \gt -1$
$f(x)=log(x+1)+\displaystyle \int_{0}^{x} f(x-t)\sin\ t\ dt$を満たす$f(x)$を求めよ
出典:2018年日本医科大学 入試問題
この動画を見る
$f(x)$:微分可能
$x \gt -1$
$f(x)=log(x+1)+\displaystyle \int_{0}^{x} f(x-t)\sin\ t\ dt$を満たす$f(x)$を求めよ
出典:2018年日本医科大学 入試問題
大学入試問題#632「微分して積分するだけ」 埼玉大学(2017) #積分方程式
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。
出典:2017年埼玉大学 入試問題
この動画を見る
$f(x)$:微分可能
$f(x)=x^2e^{-x}+\displaystyle \int_{0}^{x} e^{t-x}f(t)dt$を満たす$f(x)$を求めよ。
出典:2017年埼玉大学 入試問題
大学入試問題#631「これはさすがに...」 東邦大学医学部(2009) 定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東邦大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3} x\sqrt{ 4-x }\ dx$
出典:2009年東邦大学医学部
この動画を見る
$\displaystyle \int_{0}^{3} x\sqrt{ 4-x }\ dx$
出典:2009年東邦大学医学部