数Ⅱ
福田の数学〜九州大学2022年文系第4問〜定義に従って定積分の性質を証明する
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
$f(x)$を整式とする。$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$#\int_a^bf(x)dx=F(b)-F(a)\ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、f(x),g(x),h(x)は整式、k,lは定数である。
以下、$f(x)$が区間$0 \leqq x \leqq 1$上で増加関数になる場合を考える。
$n$を自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n}) (i = 1,2,\ldots,n) \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n} \ldots③$
よって、$n$を限りなく大きくすると$S_n$は$\int_0^1f(x)dx$に限りなく近づく。
(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことと定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と関数の増減と導関数の関係を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。
2022九州大学文系過去問
この動画を見る
定積分について述べた次の文章を読んで、後の問いに答えよ。
$f(x)$を整式とする。$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$#\int_a^bf(x)dx=F(b)-F(a)\ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、f(x),g(x),h(x)は整式、k,lは定数である。
以下、$f(x)$が区間$0 \leqq x \leqq 1$上で増加関数になる場合を考える。
$n$を自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n}) (i = 1,2,\ldots,n) \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n} \ldots③$
よって、$n$を限りなく大きくすると$S_n$は$\int_0^1f(x)dx$に限りなく近づく。
(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことと定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と関数の増減と導関数の関係を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。
2022九州大学文系過去問
三角比の大小の比較【数学 入試問題】【神戸薬科大学】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$A,B(A \neq B)$がいずれも鋭角のとき、次の3つの数のうち、最大値は$□$、最小値は$□$である。
$ sin\dfrac{A+B}{2},sin\dfrac{A}{2}+sin\dfrac{B}{2},\dfrac{sinA+sinB}{2}$
神戸薬科大過去問
この動画を見る
$A,B(A \neq B)$がいずれも鋭角のとき、次の3つの数のうち、最大値は$□$、最小値は$□$である。
$ sin\dfrac{A+B}{2},sin\dfrac{A}{2}+sin\dfrac{B}{2},\dfrac{sinA+sinB}{2}$
神戸薬科大過去問
早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。
早稲田大過去問
この動画を見る
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。
早稲田大過去問
指数方程式 (数II)
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$16^x-9 \times 4^x +8 = 0$を解け
この動画を見る
$16^x-9 \times 4^x +8 = 0$を解け
福田の数学〜浜松医科大学2022年医学部第3問〜不等式の証明と正12角形の面積
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$e$を自然対数の底とする。このとき、すべての自然数$n$について
$e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!} (x \geqq 0)$
を証明せよ。
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に
外接するとは、正12角形のすべての辺が1つの円に接することである。
(3)(1)と(2)を用いて、不等式
$\pi - e \lt \frac{3}{5}$
を証明せよ。ただし、$\sqrt3 \gt 1.73$は証明なしに用いてよい。
2022浜松医科大学医学部過去問
この動画を見る
以下の問いに答えよ。
(1)$e$を自然対数の底とする。このとき、すべての自然数$n$について
$e^x \geqq 1+\sum_{k=1}^n\frac{x^k}{k!} (x \geqq 0)$
を証明せよ。
(2)半径1の円に外接する正12角形の面積を求めよ。ただし、正12角形が円に
外接するとは、正12角形のすべての辺が1つの円に接することである。
(3)(1)と(2)を用いて、不等式
$\pi - e \lt \frac{3}{5}$
を証明せよ。ただし、$\sqrt3 \gt 1.73$は証明なしに用いてよい。
2022浜松医科大学医学部過去問
微分でもいいけど「あれ」を使えば一瞬です【数学 入試問題】【早稲田大学】
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$のとき、$3x+\dfrac{1}{x^3}$の最小値とそのときの$x$の値を求めよ。
早稲田大過去問
この動画を見る
$x>0$のとき、$3x+\dfrac{1}{x^3}$の最小値とそのときの$x$の値を求めよ。
早稲田大過去問
福田の数学〜浜松医科大学2022年医学部第2問〜3次関数が区間で常に正である条件
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$s$を実数、tを0以上の実数とし、関数f(x)を
$f(x)=x^3-sx^2+(t-2s^2)\ x+st$
により定める。関数$f(x)$に対して次の条件pを考える。
$p:0 \leqq x \leqq 1$を満たすすべてのxに対して$f(x) \gt 0$である。
このとき、条件pを満たす点(s,t)の領域を図示せよ。
2022浜松医科大学医学部過去問
この動画を見る
$s$を実数、tを0以上の実数とし、関数f(x)を
$f(x)=x^3-sx^2+(t-2s^2)\ x+st$
により定める。関数$f(x)$に対して次の条件pを考える。
$p:0 \leqq x \leqq 1$を満たすすべてのxに対して$f(x) \gt 0$である。
このとき、条件pを満たす点(s,t)の領域を図示せよ。
2022浜松医科大学医学部過去問
4次方程式の解でできた式の値
単元:
#数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^4-x^3-x^2-x+3=0$の4つの解を$\alpha,\beta,\delta,\zeta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)(\zeta^3-1)$の値を求めよ.
この動画を見る
$ x^4-x^3-x^2-x+3=0$の4つの解を$\alpha,\beta,\delta,\zeta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)(\zeta^3-1)$の値を求めよ.
自力で対数の範囲を求めて桁数を出す【数学 入試問題】【岐阜大学】
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)不等式$\dfrac{3}{10}<log_{10} 2<\dfrac{4}{13}$を証明せよ。
(2)(1)を用いて、$2^{100}は何桁の数か答えよ。
岐阜大過去問
この動画を見る
(1)不等式$\dfrac{3}{10}<log_{10} 2<\dfrac{4}{13}$を証明せよ。
(2)(1)を用いて、$2^{100}は何桁の数か答えよ。
岐阜大過去問
【数Ⅱ】加法定理から出てくる公式【全部自力で導出しよう。暗記、ダメ絶対】
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
(1$)\sin2x=cosx$$(0 \leqq x \lt 2\pi)$を解け.
(2)$t=tan\dfrac{\theta}{2}$とするとき,$\sin\theta,\cos\theta,\tan\theta$をtを用いて表せ.
この動画を見る
(1$)\sin2x=cosx$$(0 \leqq x \lt 2\pi)$を解け.
(2)$t=tan\dfrac{\theta}{2}$とするとき,$\sin\theta,\cos\theta,\tan\theta$をtを用いて表せ.
福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$i$は虚数単位とする。次の条件$(\textrm{I}),(\textrm{II})$のどちらも満たす複素数z全体の集合を
Sとする。
$(\textrm{I})z$の虚部は正である。
$(\textrm{II})$複素数平面上の点$A(1),B(1-iz),C(z^2)$は一直線上にある。
このとき、以下の問いに答えよ。
(1)1でない複素数$\alpha$について、$\alpha$の虚部が正であることは、$\frac{1}{\alpha-1}$の虚部が
負であるための必要十分条件であることを示せ。
(2)集合Sを複素数平面上に図示せよ。
(3)$w=\frac{1}{z-1}$とする。zがSを動くとき、$|w+\frac{i}{\sqrt2}|$の最小値を求めよ。
2022筑波大学理系過去問
この動画を見る
$i$は虚数単位とする。次の条件$(\textrm{I}),(\textrm{II})$のどちらも満たす複素数z全体の集合を
Sとする。
$(\textrm{I})z$の虚部は正である。
$(\textrm{II})$複素数平面上の点$A(1),B(1-iz),C(z^2)$は一直線上にある。
このとき、以下の問いに答えよ。
(1)1でない複素数$\alpha$について、$\alpha$の虚部が正であることは、$\frac{1}{\alpha-1}$の虚部が
負であるための必要十分条件であることを示せ。
(2)集合Sを複素数平面上に図示せよ。
(3)$w=\frac{1}{z-1}$とする。zがSを動くとき、$|w+\frac{i}{\sqrt2}|$の最小値を求めよ。
2022筑波大学理系過去問
対数を用いて桁数を求める良問【数学 入試問題】【東京理科大学】
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
2^{36}は$□$桁の整数である。$3^n$が$□$桁の整数となる。
最小の自然数$n$は$□$であり、$2^{36}+6・3^{□}$は$□$桁の整数である。
東京理科大過去問
この動画を見る
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
2^{36}は$□$桁の整数である。$3^n$が$□$桁の整数となる。
最小の自然数$n$は$□$であり、$2^{36}+6・3^{□}$は$□$桁の整数である。
東京理科大過去問
【超難問】1+8が難しい世界
単元:
#数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた$1+8$の計算
この動画を見る
深読みしすぎた$1+8$の計算
藤田医科大学 式の最小値
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
福田の数学〜筑波大学2022年理系第4問〜2つの三角関数のグラフで囲まれた部分の面積
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師:
福田次郎
問題文全文(内容文):
$0 \lt a \lt 4$とする。曲線
$C_1:y= 4\cos^2x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$,
$C_2:y=a-\tan^2x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$
は、ちょうど2つの共有点をもつとする。
(1)aの値を求めよ。
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ。
2022筑波大学理系過去問
この動画を見る
$0 \lt a \lt 4$とする。曲線
$C_1:y= 4\cos^2x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$,
$C_2:y=a-\tan^2x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$
は、ちょうど2つの共有点をもつとする。
(1)aの値を求めよ。
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ。
2022筑波大学理系過去問
中学生も解けるルートを含む方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x-3 \sqrt x +2 = 0
x=?
この動画を見る
x-3 \sqrt x +2 = 0
x=?
方程式を解け!
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
次の方程式を解け。
(1) $\frac{x}{2022} = 0$
(2) $\frac{2022}{x} = 0$
この動画を見る
次の方程式を解け。
(1) $\frac{x}{2022} = 0$
(2) $\frac{2022}{x} = 0$
解けるように作られた指数方程式
単元:
#数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
福田の数学〜筑波大学2022年理系第1問〜円と放物線の接線と面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師:
福田次郎
問題文全文(内容文):
$t,\ p$を実数とし、$t \gt 0$とする。xy平面において、原点Oを中心とし点A(1,t)
を通る円を$C_1$とする。また、点Aにおける$C_1$の接線をlとする。直線$x=p$
を軸とする2次関数のグラフC_2は、x軸と接し、点Aにおいて直線lとも接するとする。
(1)直線$l$の方程式をtを用いて表せ。
(2)pをtを用いて表せ。
(3)$C_2$とx軸の接点をMとし、$C_2$とy軸の交点をNとする。tが正の実数全体を動くとき、
三角形OMNの面積の最小値を求めよ。
2022筑波大学理系過去問
この動画を見る
$t,\ p$を実数とし、$t \gt 0$とする。xy平面において、原点Oを中心とし点A(1,t)
を通る円を$C_1$とする。また、点Aにおける$C_1$の接線をlとする。直線$x=p$
を軸とする2次関数のグラフC_2は、x軸と接し、点Aにおいて直線lとも接するとする。
(1)直線$l$の方程式をtを用いて表せ。
(2)pをtを用いて表せ。
(3)$C_2$とx軸の接点をMとし、$C_2$とy軸の交点をNとする。tが正の実数全体を動くとき、
三角形OMNの面積の最小値を求めよ。
2022筑波大学理系過去問
立命館(文系)複素数の計算
単元:
#数Ⅱ#複素数と方程式#複素数#大学入試過去問(英語)#立命館大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^6=1$の4つの虚数解のうちの1つを$\alpha$とする.
$(1-\alpha)(1-\alpha^3)(1-\alpha^5)$の値は$\Box$か$\Box$か.
立命館大(文系)過去問
この動画を見る
$x^6=1$の4つの虚数解のうちの1つを$\alpha$とする.
$(1-\alpha)(1-\alpha^3)(1-\alpha^5)$の値は$\Box$か$\Box$か.
立命館大(文系)過去問
福田の数学〜東京医科歯科大学2022年理系第3問〜定積分と面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
曲線$C:y=f(x) (0 \leqq x \lt 1)$が次の条件を満たすとする。
・$f(0)=0$
・$0 \lt x \lt 1$のとき$f'(x) \gt 0$
・$0 \lt a \lt 1$を満たすすべての実数aについて、曲線C上の点$(a, f(a))$
における接線と直線$x=1$との交点をQとするとき、$PQ=1$
この時以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$\int_0^{\frac{1}{2}}(1-x)f'(x)dx$の値を求めよ。
(3)曲線Cとx軸、直線$x=1$、直線$y=f(\frac{1}{2})$で囲まれた部分の面積を求めよ。
2022東京医科歯科大学理系過去問
この動画を見る
曲線$C:y=f(x) (0 \leqq x \lt 1)$が次の条件を満たすとする。
・$f(0)=0$
・$0 \lt x \lt 1$のとき$f'(x) \gt 0$
・$0 \lt a \lt 1$を満たすすべての実数aについて、曲線C上の点$(a, f(a))$
における接線と直線$x=1$との交点をQとするとき、$PQ=1$
この時以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$\int_0^{\frac{1}{2}}(1-x)f'(x)dx$の値を求めよ。
(3)曲線Cとx軸、直線$x=1$、直線$y=f(\frac{1}{2})$で囲まれた部分の面積を求めよ。
2022東京医科歯科大学理系過去問
福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。
2022東京医科歯科大学理系過去問
この動画を見る
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。
2022東京医科歯科大学理系過去問
対数方程式
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \log_9a=\log_{12}b=\log_{16}(a+b),\dfrac{b}{a}$の値を求めよ.
この動画を見る
$ \log_9a=\log_{12}b=\log_{16}(a+b),\dfrac{b}{a}$の値を求めよ.
福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。
2022東京医科歯科大学理系過去問
この動画を見る
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。
2022東京医科歯科大学理系過去問
分数式の値 京都産業大学
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{y+z}{x} = \frac{z+x}{y} = \frac{x+y}{z} = k$
$x+y+z \neq 0$ のときk=▢
$x+y+z = 0$ のときk=▢
京都産業大学
この動画を見る
$\frac{y+z}{x} = \frac{z+x}{y} = \frac{x+y}{z} = k$
$x+y+z \neq 0$ のときk=▢
$x+y+z = 0$ のときk=▢
京都産業大学
【数Ⅱ】積分計算で計算ミスを減らすテクニック
【数Ⅱ】微分法と積分法:積分計算で計算ミスを減らすテクニック
単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{3}^{5}(x-3)(x-6)dx$を求めよ.
この動画を見る
$\displaystyle \int_{3}^{5}(x-3)(x-6)dx$を求めよ.
58秒で二項定理を理解しよう
【わかりやすく】条件が比例式である等式の証明(数学Ⅱ/等式の証明)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\displaystyle \frac{a}{b}=\displaystyle \frac{c}{d}$のとき、$\displaystyle \frac{a+b}{a-b}=\displaystyle \frac{c+d}{c-d}$が成り立つことを証明せよ。
この動画を見る
$\displaystyle \frac{a}{b}=\displaystyle \frac{c}{d}$のとき、$\displaystyle \frac{a+b}{a-b}=\displaystyle \frac{c+d}{c-d}$が成り立つことを証明せよ。
微分でも解けるけど・・・【数学 入試問題】【慶應義塾大学 改題】
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。
慶應義塾大改題過去問
この動画を見る
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。
慶應義塾大改題過去問