数Ⅱ
福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(23) 重要な変形(1)\\
\triangle ABCにおいて\\
\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C\\
を証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(23) 重要な変形(1)\\
\triangle ABCにおいて\\
\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C\\
を証明せよ。
\end{eqnarray}
【数Ⅱ】三角関数:相加相乗その5
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
y軸上の2つの点、A(0,2)、B(0,8)とx軸上の点P(a,0)(a>0とする)について考える。このとき、∠APBを最大とするaの値を求めよ。
この動画を見る
y軸上の2つの点、A(0,2)、B(0,8)とx軸上の点P(a,0)(a>0とする)について考える。このとき、∠APBを最大とするaの値を求めよ。
【数Ⅱ】式と証明:相加相乗平均その3
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a\gt 0$のとき $\dfrac{a}{a^2+4}$の最小値を求めよ。
この動画を見る
$a\gt 0$のとき $\dfrac{a}{a^2+4}$の最小値を求めよ。
福田のわかった数学〜高校3年生理系101〜大小比較(1)
単元:
#数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 大小比較(1)\\
999^{1000}と1000^{999}\\
の大小を比較せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 大小比較(1)\\
999^{1000}と1000^{999}\\
の大小を比較せよ。
\end{eqnarray}
福田のわかった数学〜高校2年生083〜三角関数(23)18°系の三角比(3)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(22) 18°系の三角比(3)\\
(1)\cos5\theta=f(\cos\theta)を満たす多項式f(x)を求めよ。\\
\\
(2)\alpha=18°のとき次の等式を示せ。\\
\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(22) 18°系の三角比(3)\\
(1)\cos5\theta=f(\cos\theta)を満たす多項式f(x)を求めよ。\\
\\
(2)\alpha=18°のとき次の等式を示せ。\\
\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}
\end{eqnarray}
【因数定理】因数定理の使い方と原理を解説しました!〔数学、高校数学〕
【数Ⅱ】図形と方程式:横浜国立大2019年(理系)第4問の解説
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)
2019年度(前期)第4問
Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
この動画を見る
横浜国立大(理系)
2019年度(前期)第4問
Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
福田のわかった数学〜高校3年生理系100〜不等式の証明(7)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(7)\\
e^a(b-a) \lt e^b-e^a \lt e^b(b-a)\\
(ただし、a \lt b)
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 不等式の証明(7)\\
e^a(b-a) \lt e^b-e^a \lt e^b(b-a)\\
(ただし、a \lt b)
\end{eqnarray}
福田のわかった数学〜高校2年生082〜三角関数(21)18°系の三角比(2)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(21) 18°系の三角比(2)\\
0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\thetaのとき\\
(1)\thetaを求めよ。\\
(2)\cos\thetaを求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(21) 18°系の三角比(2)\\
0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\thetaのとき\\
(1)\thetaを求めよ。\\
(2)\cos\thetaを求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系099〜不等式の証明(6)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(6)\hspace{170pt}\\
0 \lt a \lt b \lt \frac{\pi}{2}のとき、\frac{a}{b} \lt \frac{\sin a}{\sin b}が成り立つことを証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 不等式の証明(6)\hspace{170pt}\\
0 \lt a \lt b \lt \frac{\pi}{2}のとき、\frac{a}{b} \lt \frac{\sin a}{\sin b}が成り立つことを証明せよ。
\end{eqnarray}
福田のわかった数学〜高校2年生081〜三角関数(20)18°系の三角比(1)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(20) 18°系の三角比(1)\\
\sin\frac{\pi}{10}の値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(20) 18°系の三角比(1)\\
\sin\frac{\pi}{10}の値を求めよ。
\end{eqnarray}
2021一橋大(経済)補足と別解
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋大(経済)過去問
この動画を見る
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋大(経済)過去問
2021一橋(経済)後期
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋(経済)過去問
この動画を見る
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋(経済)過去問
福田のわかった数学〜高校3年生理系098〜不等式の証明(5)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(5)\\
b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)を証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 不等式の証明(5)\\
b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)を証明せよ。
\end{eqnarray}
福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(19) なす角(3)\hspace{190pt}\\
2点A(0,2), B(0,8)がある。点P(a,0) (a \gt 0)について\angle APBが最大となるaは?
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(19) なす角(3)\hspace{190pt}\\
2点A(0,2), B(0,8)がある。点P(a,0) (a \gt 0)について\angle APBが最大となるaは?
\end{eqnarray}
【数Ⅱ】相加平均・相乗平均の関係を正しく使いこなそう【よくある間違え方とは】
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ (1)x \gt 0のとき,x+\dfrac{9}{x}\geqq 6を示せ.
(2)x \gt 0のとき,x+\dfrac{9}{x}の最小値を求めよ.
(3)x \gt 0のとき,x+\dfrac{6}{x+1}の最小値を求めよ.
(4)x \gt 0のとき,\dfrac{x^2;5x+15}{x+2}の最小値を求めよ.
(5)a \gt 0,b \gt 0のとき\left(a+\frac{1}{b} \right)\left(\frac{16}{a}+b \right)の最小値
を求めよ.$
この動画を見る
$ (1)x \gt 0のとき,x+\dfrac{9}{x}\geqq 6を示せ.
(2)x \gt 0のとき,x+\dfrac{9}{x}の最小値を求めよ.
(3)x \gt 0のとき,x+\dfrac{6}{x+1}の最小値を求めよ.
(4)x \gt 0のとき,\dfrac{x^2;5x+15}{x+2}の最小値を求めよ.
(5)a \gt 0,b \gt 0のとき\left(a+\frac{1}{b} \right)\left(\frac{16}{a}+b \right)の最小値
を求めよ.$
三角関数基本
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
値を求めよ.
$\cos \dfrac{\pi}{7}・\cos \dfrac{2\pi}{7}・\cos\dfrac{3\pi}{7}$
この動画を見る
値を求めよ.
$\cos \dfrac{\pi}{7}・\cos \dfrac{2\pi}{7}・\cos\dfrac{3\pi}{7}$
福田のわかった数学〜高校3年生理系097〜不等式の証明(4)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(4)\\
(x+2)\log(x+1) \geqq 2x (x \geqq 0)を証明せよ。\\
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 不等式の証明(4)\\
(x+2)\log(x+1) \geqq 2x (x \geqq 0)を証明せよ。\\
\end{eqnarray}
福田のわかった数学〜高校2年生079〜三角関数(18)2直線のなす角(2)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(18) なす角(2)\\
\\
y=3x+1と\frac{\pi}{6}の角をなし、原点を通る直線の方程式を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(18) なす角(2)\\
\\
y=3x+1と\frac{\pi}{6}の角をなし、原点を通る直線の方程式を求めよ。
\end{eqnarray}
4次方程式
【数Ⅱ】不等式の証明・基本パターン【書き出しに注意!】
高校範囲だけど中3生も解けるし
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{x^2-2}{x-1} + \frac{1}{x-1}$
この動画を見る
$\frac{x^2-2}{x-1} + \frac{1}{x-1}$
福田のわかった数学〜高校3年生理系096〜不等式の証明(3)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(3)\\
\sqrt{ab} \lt \frac{b-a}{\log b-\log a} \lt \frac{a+b}{2} (0 \lt a \lt b)を証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 不等式の証明(3)\\
\sqrt{ab} \lt \frac{b-a}{\log b-\log a} \lt \frac{a+b}{2} (0 \lt a \lt b)を証明せよ。
\end{eqnarray}
【2次方程式の知識はこれで完ペキ!】複素数と2次方程式の関係を解説!〔数学、高校数学〕
0の0乗ってなに?
福田のわかった数学〜高校2年生078〜三角関数(17)2直線のなす角(1)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(17) なす角(1)\\
2直線y=3x-1, y=-2x+4\\
のなす角\theta(0 \lt \theta \lt \frac{\pi}{2})を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(17) なす角(1)\\
2直線y=3x-1, y=-2x+4\\
のなす角\theta(0 \lt \theta \lt \frac{\pi}{2})を求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系095〜不等式の証明(2)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 不等式の証明(2)\\
x\log x \geqq (x-1)\log(x+1) (x \geqq 1)を証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 不等式の証明(2)\\
x\log x \geqq (x-1)\log(x+1) (x \geqq 1)を証明せよ。
\end{eqnarray}
【数Ⅱ】「少なくとも1つが1」「すべてが1」を等式で証明する。【主張を言い換える】
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ a+b+c=1,ab+bc+ca=abcが成り立つとき,
a,b,cのうち少なくとも1つは1であることを示せ.$
この動画を見る
$ a+b+c=1,ab+bc+ca=abcが成り立つとき,
a,b,cのうち少なくとも1つは1であることを示せ.$
大学入試じゃないよ 高校入試だよ 3通りで解説 成城学園
単元:
#数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2^{56}と5^{24}$はどっちが大きい?
成城学園高等学校
この動画を見る
$2^{56}と5^{24}$はどっちが大きい?
成城学園高等学校